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Review: A gentle introduction to magnetism: units, fields,
theory, and experimenty

CHRISTOPHER P. LANDEE* and MARK M. TURNBULL

Department of Physics and Carlson School of Chemistry and Biochemistry, Clark University,
Worcester, MA, USA

(Received 13 December 2013; accepted 10 January 2014)

We present an introduction to the workings, units of measure, and general properties of magnetic
materials. This is intended as a “primer to interpretation of magnetic data” for those who are enter-
ing the field, or those who are encountering magnetic measurements in the literature. We expect this
work will serve as an initial guide to the reader to familiarize them with the basics in the hope that
those working in the field of magnetochemistry will wish to explore additional, more detailed litera-
ture as their specific investigations demand. Topics covered include: magnetic fields and units (SI
and cgs), paramagnetism (magnetization and magnetic susceptibility), Curie and Curie–Weiss behav-
ior, magnetic exchange interactions, magnetic anisotropy, dimeric systems and exchange-coupled
networks (including chains, ladders, and layers), and long-range order.

Keywords: Magnetochemistry; Magnetic exchange; Magnetic lattices; Exchange-coupled networks;
Magnetic susceptibility; Magnetization; Magnetic units

1. Introduction

Over the past several decades, a significant number of chemical research groups have begun
incorporating magnetic data into their work. There are a variety of reasons for this
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development: the greater access to SQUID magnetometers with user-friendly software;
increased collaborations between synthetic and physical chemistry groups; increased
collaborations between chemists and physicists; and the greater ability to form international
collaborations. However, as is frequently the case, many of these scientists are not simply
new to collecting magnetic data; they are also new to the field of magnetism and especially
to understanding the influence of magnetic interactions. Using a room temperature magnetic
moment to determine whether an isolated ion is high spin or low spin can be a straightfor-
ward matter, but the presence of interactions frequently leads to complex temperature- and
field-dependent data. The interpretation of such data is much more challenging to those
without sufficient experience.

This increase in reported magnetic data and magnetic behavior in materials extends
beyond the researchers themselves. As more chemists report magnetic data, it becomes
incumbent upon referees and readers to also be more familiar with routine interpretation of
temperature- and field-dependent magnetic data. This can be especially confusing to the
novice when the literature is taken into account. Historically, different systems of units have
been used for reporting magnetic data, and converting between them is not trivial. Even the
question of the simplest form of the magnetic exchange Hamiltonian can be a daunting task
given the variety of forms used. Is there a factor of two incorporated or not? What is the
meaning of the sign of J?

We present here a “Primer to interpreting magnetic data” that is intended as an introduc-
tion for those new to the field, whether new students or senior scientists, and we hope it
will serve as a stepping-stone to the more in-depth and specific reviews that are already
available in the literature. Please note that there is nothing original in this document;
everything presented here is standard magnetism as described in a long series of books,
monographs, and review articles [1–12].

1.1. Magnetic fields and units in the SI system

The International System of Units [13] (SI for the French name “Système International
d’unités”) is the modern form of the metric system, founded upon seven base units.
For magnetism, it is only necessary to use four of them: meters, kilograms, seconds,
and amperes (MKSA). All other units can be derived from these units plus fundamen-
tal equations of science. For instance, the metric unit for electric charge, the Coulomb
(C), is defined to be the charge transferred by a current of one ampere (A) in one sec-
ond.

The SI system is universally used in education and employs the mechanical and electrical
units with which we are all familiar: joules, watts, newtons, volts, ohms, farads, etc. The
units of magnetism are less familiar but can all be readily derived, as we shall see in the fol-
lowing paragraphs. Unfortunately, much of the research in magnetism is still reported in the
older cgs (centimeters, grams, seconds) system of units and converting from one system to
the other is an endless source of confusion. Following this introduction to SI magnetism,
cgs magnetism will be discussed, along with the appropriate conversion factors, in
Section 1.2.

We begin with the most important field, B, which can be defined in terms of the force on
a moving charge through the equation F = qv × B, where the respective units are Newtons
(N) for force, Coulombs (C) for charge, m s−1 for velocity, and Tesla (T) for B. One tesla is
thus equivalent to one N A−1 m−1, where the current is expressed in amps. The name of the
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B-field is the magnetic flux density†, because it equals the number of magnetic flux lines (in
units of Webers (Wb)) passing through an area of one square meter: 1T = 1Wb m−2.

The B-field is related to the two other magnetic fields, H and M, by equation (1), in
which the proportionality constant μ0 is named the permeability of free space and has a
value of exactly 4π × 10−7 T mA−1.

B ¼ l0 ðH þMÞ (1)

The H-field, named the magnetic field, arises from electrical currents passing through
wires. (The field created by current in a solenoid is the H-field.) The magnitude of the
magnetic field at a distance r from a long straight wire carrying a current I is given by the
equation

H ¼ 1

2p
I

r
(2)

Consequently the units for the H-field are amperes per meter, A m−1. As shown later, one
A m−1 is a very small field. It is also clear from equation (1) that M and H must have the
same unit, A m−1. It is essential to realize that the magnetization appearing in equation (1)
is the magnetization per unit volume, and not the more common magnetization per mole
used in experimental work.

The volume magnetization M equals the vector sum of all the magnetic moments per
cubic meter. Magnetic moments‡ arise from circulating currents (whether quantum or free
currents) and are equal to the product of the current in the loop times the area of the loop;
moments have units of amp-meter2 (A m2). The moment is normal to the plane of the loop
and in the direction such that the H-field generated by the current passes through the loop
according to the right-hand rule.

M ¼
X
i

li

 !
=unit volume (3)

The units of the volume magnetization are A m2 per cubic meter, or A m−1, the same as
that of the magnetic field H.

Scientists rarely know the volumes of their samples, but they can measure the masses.
For this reason, the magnetization per unit mass Mkg is more useful. It is obtained from the
volume magnetization by dividing M by the sample’s density expressed in the SI units of
density, kilograms per cubic meter, equation (4).

MkgðAm2 kg�1Þ ¼ MðAm�1Þ
qðkgm�3Þ (4)

One can then obtain the magnetization per mole Mmol by multiplying the mass
magnetization by the formula weight (FW), equation (5).

MmolðAm2mol�1Þ ¼ MkgðAm2 kg�1Þ � FWðkgmol�1Þ (5)

†The B-field is also known as the magnetic induction.
‡This topic is addressed more completely in Section 2.
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The magnetic susceptibility v is usually the first quantity measured for a new compound.
The volume susceptibility is defined as the ratio of the sample’s volume magnetization to
the applied H-field, in the limit of a vanishingly small field, equation (6):

vvolðdimensionlessÞ ¼ lim
H!0

M

H
(6)

The volume susceptibility is dimensionless because the units of the volume magnetization
and the magnetic field are the same, equation (1). Nevertheless, in the laboratory, we mea-
sure the magnetization per unit of mass, and calculate the magnetization per mole, so the
corresponding mass and molar susceptibilities are defined as follows:

vkgðm3 kg�1Þ ¼ lim
H!0

Mkg

H
(7a)

vmolðm3 mol�1Þ ¼ lim
H!0

Mmol

H
(7b)

The units for the mass and molar susceptibilities are those of the inverse density and the
molar volume, respectively.

This section concludes with the important connection between SI magnetic units and
energy. In a B-field, a magnetic moment experiences a torque that tends to align the
moment parallel to the field. The energy U required to rotate the moment away from the
field direction is given as

U ¼ �l �Bðthe Zeeman equationÞ (8)

with the minimum energy configuration occurring when the moment and field are parallel.
As seen from the units of this equation, the SI unit of moment μ (A m2) is also equal to the
ratio of energy to field, one joule per tesla: 1 A m2 = 1 J T−1.

1.2. Magnetic fields and units in the CGS system

The SI is the legal system, but legality is not science. Indeed, this system is particularly
inappropriate in molecular magnetism and, like most researchers involved in this field, we
prefer to use the cgs-emu system. Olivier Kahn [1]

People studied magnetism long before the advent of the SI system and they created unit
systems to suit their own purposes, usually to make a set of fundamental equations as
simple as possible. Length, mass, and time were always in units of centimeters, grams, and
seconds so these unit systems became known as cgs systems. However, multiple cgs
systems were created, each one for the study of one particular branch of physics.

As an example, in the study of electrostatics, the fundamental unit of charge was defined
such that two identical charges, separated by one centimeter, exerted mutual forces of one
dyne (1 g cm s−2 = 10−5 N). In the cgs-electrostatic unit system (cgs-esu), Coulomb’s Law
has the simple form

Coulomb’s Law ðcgs� esu):F ¼ q1q2
r2

(9)
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The charge thus defined is the esu unit of charge, the statcoulomb (1 sC = 3.33 × 10−10C).
One statampere is the flow of one statcoulomb per second and equals 3.33 × 10−10A.

In contrast, for the study of magnetism, the cgs-electromagnetic system was created
(cgs-emu) based on the definition of one unit of magnetic moment such that two equal
moments separated by one centimeter repel each other with a force equal to one dyne.
Given that the magnetic moment is equal to the product of a current times an area, this
definition of moment defines the cgs-emu current, known as the absolute current or abamp
(1 abA = 10 A) which is different from the stat-amp. Ultimately, the Gaussian system of cgs
units evolved which uses esu units for charges and emu units for magnetic fields and
moments. For the study of magnetism in this Tutorial, the Gaussian and cgs-emu units are
identical. The relationships between the Gaussian and MKSA units are given in Appendix
A. Additional sources for studying this confusing topic are available [14].

In the cgs-emu system, B, H, and M are related as shown in equation (10). The units of
B and H are equivalent but are given different names to help identify the field under discus-
sion. The unit of the B-field is the gauss (G, 1 G = 10−4 T) and those of the H-field are
oersteds (Oe, 1 Oe = 103/4πAm−1 = 79.6 Am−1). The volume magnetization consists of the
vector sum of individual magnetic moments per unit volume, equation (3), and is often said
to have units of emu/cm3. This is unfortunate nomenclature for it leads people to believe
that the emu is the cgs-emu unit of magnetic moment; it is not! This use of emu simply
means that the magnetization is given in the emu system, with the cm3 identifying the mag-
netization as the volume magnetization. Likewise, the mass and molar magnetizations in
cgs units are commonly written as emu g−1 and emu mol−1, respectively (see Appendix A).

B ¼ H þ 4pM (10)

If not the emu, what is the cgs unit of magnetic moment? It is identified from equation (8),
the Zeeman equation, for the energy (in ergs) of a moment in an applied field (in G). The cgs
moment has units of ergs G−1 and is smaller than the SI unit of moment, the Am2, by exactly
1000.

1
erg

G
¼ 10�7J

10�4T
¼ 10�3 Am2 (11)

Do we get the same numerical result when we compare definitions of moments (as a
product of currents times area) from the cgs and SI systems? Does 1 A cm2 = 10−3 A m2?
Clearly not, because 1 m2 = 104 cm2. The inequality arises because the cgs-emu unit of cur-
rent is not the ampere, but the abampere, equal to 10 amperes. This example reveals a
severe disadvantage of the Gaussian system; its units for electrical variables (charge, cur-
rent, voltage, and resistance) are all different from the SI units in everyday use.

The cgs volume magnetization therefore has units of erg G−1 cm−3, usually expressed as
emu cm−3. From equation (10), we see that volume magnetization also has the units of
oersteds, so 1 Oe = 1 erg G−1 cm−3 = 1 emu cm−3. However, it is also seen in equation (10)
that 4πM has the unit of gauss! In the cgs system, both the free currents in wires and the
bound currents in magnetized matter produce magnetic flux lines but the free currents are
weighted more heavily. This difference does not occur in the SI system, equation (1).

For low fields, and in the absence of any permanent moments or hysteresis, the magneti-
zation is proportional to the H-field, M ¼ vH, equation (6), with the proportionality
constant v defined as the magnetic susceptibility. The ratio of M/H is dimensionless so
1 emu/cm3 = 1 Oe = 1 G. Under these conditions, equation (10) can be written as
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B ¼ ð1þ 4pvvolÞH ¼ lH (12)

where the ratio of B/H is defined as the magnetic permeability μ. Since B and H have equal
units, both the permeability and volume susceptibility are dimensionless.

As described in Section 1.1, for experimental work, it is convenient to work with the
mass and molar magnetizations. These are calculated by the same procedure used
previously, with the following results:

Mgðemu g�1Þ ¼ Mðemu cm�3Þ=qðg cm�3Þ (13a)

Mgðemumol�1Þ ¼ Mmolðemu g�1Þ� FWðgmol�1Þ (13b)

The mass and molar susceptibilities are defined in terms of the Mg and Mmol as before.

vgðcm3 g�1Þ ¼ lim
H!0

Mg

H
(14a)

vmolðcm3 mol�1Þ ¼ lim
H!0

Mmol

H
(14b)

The units for the mass and molar susceptibilities are once again those of inverse density
and molar volume, respectively, just as found for the equivalent SI susceptibilities in
equation (7).

We conclude this section by evaluating the conversion factors between the cgs and SI
susceptibilities. In addition to powers of 10 that arise from converting base units (1 cm3

mol−1 = 10−6 m3 mol−1), a factor of 4π appears, due to the existence of 4π in equation (10)
and its absence in equation (1). For this reason, a cgs molar susceptibility in units of cm3

mol−1 equals 4π × 10−6 times the SI molar susceptibility, equation (14). See Appendix A.

vmolðcm3 mol�1Þ ¼ 4p� 10�6vmolðm3 mol�1Þ (15)

We have just defined the susceptibilities in the two unit systems, and learned how to con-
vert from one system to the other. However, we are not done. As shown in Section 2, appli-
cation of a magnetic field to a magnetic material will induce a moment that is determined
by the B-field, not the H-field. When calculating the susceptibility, the ratio B/H will appear.
This ratio is dimensionless in cgs-emu system [equation (10)], but B/H has the units of
(T m A−1) in the SI system, equation (1), so the conversion of susceptibility units is more
complex than shown in Appendix A.

2. Paramagnetism – magnetization and susceptibility of a mole of independent spins

In this section, we begin the study of magnetism itself. The connection between angular
momentum and magnetic moments is reviewed in Section 2.1, both for classical currents
and at the quantum level. Section 2.2 explores the effects of temperature and field upon a
collection of non-interacting moments; the case of S = 1/2 is worked out in detail. It is seen
that the net magnetization is due to a competition between the aligning effect of the B-field
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and the randomizing influence of the thermal energy. In the limit of small B/T, the magneti-
zation is linear with the field and the equation for the paramagnetic magnetic susceptibility
is derived. Section 2.3 discusses Curie’s Law for the paramagnetic susceptibility and the
Curie constant is derived. Surprisingly, in SI units, the Curie constant needs to be multiplied
by μ0 to have the correct units for the susceptibility. Section 2.4 describes the need for
demagnetization corrections that are necessary when working with large susceptibilities. A
table of the fundamental physical constants in both SI and cgs units is available in
Appendix B. A table of energy units used in magnetism, and their conversion factors,
appears in Appendix C.

2.1. Magnetic moments of quantum spins

The origins of electricity and magnetism are fundamentally different. Electricity arises from
two distinct electric charges, positive and negative, exemplified by the proton and electron.
In an otherwise neutral molecule, such as H2O, the centers of the positive and negative
charge densities are displaced from each other, leading to an electric dipole moment. The
same cannot be said for magnetism. No one has ever isolated an individual magnetic pole
(magnetic monopole) even though there is no theoretical reason why monopoles cannot
exist. Consequently, every magnet is a dipole. This distinction exists because, in contrast to
electricity, all of magnetism arises from charges in motion.

The simplest possible illustration of this principle is a small circular loop of radius R, in
which a charge q circulates at speed v. Experience shows that the magnetic behavior of any
current loop can be described as arising from a magnetic moment μ that equals the product
of the current and the area A of the loop, μ = IA. Since current in SI units is given in
amperes (A) and areas in square meters, the units of magnetic moments are A m2. The
direction of the moment is perpendicular to the plane of the loop, in accordance with the
right-hand rule. The thumb of the right hand points in the direction of the positive current
and the fingers of the right hand curl through the loop in the same sense as the magnetic
moment.

We calculate the magnetic moment of the simplest possible system, the circular current
loop. The period of the motion (T) is the ratio of the circumference, 2πR, to the velocity, v :
T = 2πR/v. The current (in Coulombs per sec) is given by the charge divided by the period,
I = q/(2πR/v) = qv/2πR. As the magnetic moment equals the product of the current and the
area A of the circular loop (A = πR2),

l ¼ qvR

2
ðcircular loopÞ (16)

Two important points immediately follow. First is the recognition that the magnetic
moment is proportional to the angular momentum L of the moving charge. Recall that the
angular momentum of an object moving about a point is given as the vector product L =
R ×mv =mvR sin(θ), where mv is the momentum of the object, R is the vector from the
point in question to the location of the object, and θ is the angle between v and R. For cir-
cular motion, R is simply the radius of the circle, p = mv, and the two vectors are orthogo-
nal (θ= 90°). Therefore L =mvR and vR = L/m. The product vR also appears in equation
(16) for the magnetic moment, so the equation can be rewritten
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l ¼ qL

2m
(17)

(Even though we have derived equation (17) only for the special case of a circular loop,
it can be shown to be true for a current loop of any shape.)

For a current due to the rotation of positive charges, the magnetic moment vector is
parallel to that of the angular momentum. However, and this is the second important point,
we are usually interested in currents arising from negatively charged electrons. For
electrons, μ and L point in opposite directions, figure 1. Equation (17) can be rewritten for
the case of electrons using the electron mass me and the electron charge, –e (the symbol e
represents the absolute value of 1.602 × 10−19C).

�l ¼ eL

2me
(18)

Equation (18) can be used to calculate the magnetic moment of an atom that has one
electron with orbital momentum L. The total magnetic moment resulting from the orbital
motion of all the electrons in the atom is the vector sum Ltot where the sum is over all the
electrons in unfilled shells,

Ltot ¼
X
i

Li (19)

Equation (18) brings us to one of the fundamental units of magnetism, the Bohr magne-
ton. Orbital angular momentum at the atomic level is quantized and appears as an integer
multiple of Planck’s constant �h : L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðl þ 1Þp
�h; Lz ¼ l�h. Consequently, the magnetic

moment arising from an electron in a quantized orbit, equation (18), will also be quantized.

ll ¼ � e�h

2me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl þ 1Þ

p
¼ �lB

L

�h
ðorbital electronmomentÞ (20)

Figure 1. Relationship between angular momentum and magnetic moment for currents of positive and negative
charges.
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This ratio of basic units (e�h=2me) is one of the fundamental constants in science and is
given the symbol μB and named the Bohr magneton. It has the very small value of 9.274 ×
10−24 J T−1 in SI units, and 9.274 × 10−21 erg G−1 in cgs units. It is the conversion factor
between quantum units of angular momentum and the resulting magnetic moment.†

The quantum mechanics of orbital angular momentum show that the magnitude of the
angular momentum is related to the quantum number l in the following manner:
L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðl þ 1Þ �hp
. The component of angular momentum along a particular axis z (Lz) is

given as Lz ¼ ml �h, where ml can assume values over the range l, l – 1, l – 2, …, –l + 1, –l.
Similar rules apply for the intrinsic, or spin angular momentum of the electron. Even an

electron at rest has an angular momentum S ¼ �h=2, with components Sz ¼ ms�h,
ms ¼ �1=2. Consequently, each electron also has an intrinsic magnetic moment
le ¼ �glBS=�h, where the negative sign arises from the electron’s negative charge. The
constant g (2.0023) is the electron g-factor and reflects the different proportionality between
spin and orbital angular momentum in creating magnetic moments.

The important conclusion of this section is that the magnetic moments of atoms and ions
can be evaluated by summing over the orbital and spin angular momenta and the result can
be expressed as some number of Bohr magnetons. The average moment per atom can still
be given in Bohr magnetons even in more complicated cases, such as magnetic metals, in
which some of the electrons are no longer constrained to individual atoms. For example, at
room temperature, iron has a moment of 2.14 μB per atom.

2.2. Magnetization of a mole of independent spins

2.2.1. The spin S = 1/2 case. We will first consider the magnetic properties of one mole of
electron magnetic moments, with ms = ±1/2 and μz = –gμBms. When a magnetic field B is
applied in the z-direction, the energy U of each moment will vary according to the Zeeman
equation, equation (8):

U ¼ �l � B ¼ � �glB
�h

S � B
� �

¼ glBmsB (21)

The moments parallel to the field (ms = –1/2) have their energies lowered as the field
increases, while those antiparallel experience the opposite effect (figure 2). The energy
splitting Δ between the two states is given as

D ¼ glBmsB� ð�glBmsBÞ ¼ 2glBmsB ¼ glBB (22)

The molar magnetization Mmol equals the product of the net number of spins aligned with
the field with the moment of each spin:

Mmol ¼ leðNþ � N�Þ; (23)

where N+ and N– represent the number of moments respectively parallel and antiparallel to
the field; the sum of N+ and N– equals Avogadro’s number, NA. The values of N+ and N– are
related through the Boltzmann relation, N�=Nþ ¼ e�D=kBT . Simple algebra then reveals that
Nþ ¼ NA=ð1þ e�D=kBT Þ and N� ¼ NAe�D=kBT=ð1þ e�D=kBT Þ. As the temperature decreases

†It is a good exercise in the use of SI units to prove that the Bohr magneton does have units of A m2.
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to zero, the exponential terms rapidly vanish, and N+ and N– reach their limiting values of NA

and zero, respectively, and the molar magnetization reaches its saturation value, Msat.

Msat ¼ NAglBS (24)

Using the values for the fundamental constants (Appendix A), the saturation moment per
mole for S = 1/2 in both unit systems can be calculated as follows:

MsatðcgsÞ ¼ 5:585
g

2

� �
�103emumol�1

MsatðSIÞ ¼ 5:585
g

2

� �
Am2 mol�1 (25)

The full equation for the field and temperature dependence of the molar magnetization is
quickly obtained using the formulae for N+ and N– in equation (23), resulting in equation
(26).

Mmol ¼ le NA
1� e�

D
kBT

1þ e�
D

kBT

 !
� e

D
2kBT

e
D

2kBT

 !
¼ NAle

e
D

2kBT � e�
D

2kBT

e
D

2kBT þ e�
D

2kBT

 !

¼ NAglBms tanh
D

2kBT

� �
¼ Msat tanh

glBB
2kBT

� � (26)

where tanh represents the hyperbolic tangent.
Notice that the argument of the hyperbolic tangent in equation (26) is simply the ratio of

the Zeeman energy of an S = 1/2 moment in field B to the thermal energy at temperature T.
The magnetization is determined by the energetic competition between the aligning nature
of the magnetic field and the randomness of thermal energy. When the ratio B/T is suffi-
ciently large, the magnetization approaches saturation at its upper limit Msat. As B/T ratio
decreases, so does the magnetization, ultimately going to zero in the limit of zero field or
extreme temperature. The full dependence of the hyperbolic tangent upon its argument is
shown in figure 3. It is seen that tanh(x) is zero at the origin, equals its argument within
one percent up to x = 0.15, and rapidly reaches its saturation value of one: tanh(1) = 0.761,
tanh(2) = 0.964, and tanh(3) = 0.995.

Figure 2. Energy level diagram of an S = 1/2 moment in a magnetic field B.
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The magnetic susceptibility is defined as the limiting low-field value of the ratio of magne-
tization to the applied field [equation (6)]. Measurements of the susceptibility must be done
in fields for which the M/H ratio is linear. For a mole of non-interacting S = 1/2 moments,
the argument of the tanh(x) function (gμBB/2kBT) must be less than 0.15. The ratio μB/kB
equals 0.6717 TK–1 so the linear range is obtained so long as the B-field is less than 0.22 T
(2.2 kG) for every degree of temperature (assuming g = 2.00). For example, if the lowest
temperature is 4.2 K, fields up to 9 kG (0.9 T) can be used to determine the susceptibility of
paramagnetic samples. This fact is useful when deciding on an experimental field for a study
of the temperature dependence of susceptibility, provided interactions are negligible.

The final expression for the magnetization (in cgs units) for a mole of S = 1/2 moments is

MðB; TÞ ¼ Msat tanh 6:717� 10�5 g

2

� �BðGÞ
TðKÞ

� �
(27)

where the magnetic field is expressed in units of Gauss. For example, in a 5 T (50,000 Oe)
field at 1.8 K, the argument in equation (26) equals 1.87(g/2). For a copper(II) sample with
〈g〉 = 2.10, the argument equals 1.96, enough to reach 95% of the saturation field. This is a
useful expression for comparing experimental molar magnetization data collected as a func-
tion of field at constant temperature. M, B, and T are all measured variables and g is the
only free parameter. If the experimental data can fit to this expression with a reasonable
value for g (2.10 ± 0.05), that means that no significant exchange interactions are present.
The existence of ferromagnetic interactions would cause the magnetization to increase faster
with applied field than the hyperbolic tangent function, while antiferromagnetic interactions
would cause the magnetization to increase at a slower rate.

2.2.2. The case when S > 1/2. The calculation above for the magnetization of independent
moments was carried out for the limiting case of S = 1/2 with only two discrete energy
levels in an applied field. For larger values of the spin, 2S + 1 levels arise from Zeeman
splitting and the calculation of the magnetization becomes more complex. As demonstrated
in the standard reference books [1, 4], the molar magnetization of a collection of
non-interacting spins can be written in the form

Figure 3. Dependence of the hyperbolic tangent function, tanh(x), upon its argument x.
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MmolðB; TÞ ¼ MsatBs
glBSB
kBT

� �
; where (28)

Bs
glBSB
kBT

� �
� 2S þ 1

2S

� �
coth

ð2S þ 1Þ
2S

glBSB
kBT

� �
� 1

2S
coth

1

2S

glBSB
kBT

� �
(29)

BS(x) is known as the Brillouin function and coth stands for the hyperbolic cotangent. In
the limit of S = 1/2, the Brillouin function reduces to the hyperbolic tangent. In figure 4, the
relative magnetization curves (Mmol/Msat versus B/T) for S = 1/2, 1, 3/2, 2, and 5/2, are
shown on the same plot for B/T values from zero up to 40 kG/Kelvin. Notice that the
smaller the spin value, the easier the system is to magnetize.

In the classical limit (S→∞), the projection of the moment along the field can vary con-
tinuously so the Zeeman energy varies continuously. The summation over all possible levels
then becomes an integral rather than a discrete sum. In this limit, the magnetization is given
by the expression

MmolðB; TÞ ¼ MsatLðglBBkBT
Þ; (30)

where L(x) is the Langevin function: LðxÞ� cothðxÞ � x�1.

2.3. Magnetic susceptibility of a mole of independent spins: Curie’s law

The magnetic susceptibility for a mole of paramagnetic S = 1/2 moments can be
immediately calculated from the definition of the molar susceptibility, equation (7b), and
the low-field limit of the molar magnetization, equation (26), recalling that the saturation
magnetization Msat ¼ NAglBS. For small arguments, the hyperbolic tangent equals its
argument and the susceptibility has the following form:

Figure 4. The B/T dependence of the Brillouin function for spin values 1/2, 1, 3/2, 2, and 5/2. The lowest curve
shows the dependence of the Langevin function, appropriate for classical spin (S = ∞).
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vmol S ¼ 1

2

� �
¼ lim

H!0

Mmol

H
¼ Msat

glBSB
kBT

1

H

� �
¼ NAðglBÞ2S2

kBT

B

H
¼ NAðglBÞ2

4kBT

B

H
(31)

For other values of the spin, the Brillouin function must be used and the S2 appearing in
equation (31) is replaced by S(S + 1).

vmol ðSÞ ¼ lim
H!0

Mmol

H
¼ Msat

glBSB
kBT

1

H

� �
¼ NAðglBÞ2SðS þ 1Þ

3kBT

B

H
(32)

This equation contains three experimental parameters (B, H, and T) and a series of con-
stants. The ratio of constants is known as the Curie constant C and the resulting expression
for the susceptibility of a mole of spin S moments follows:

vmol ðSÞ ¼ lim
H!0

Mmol

H
¼ C

T

B

H
; where C ¼ NAðglBÞ2SðS þ 1Þ

3kB
(33)

Equation (33) is known as Curie’s Law, but it is not yet in final form. It surprisingly
contains the B/H ratio that is defined as the magnetic permeability†, equation (12). The final
forms of Curie’s Law in the two unit systems depend on the two different expressions for
the permeability.

For the cgs-emu system, the permeability is dimensionless (strictly speaking, G Oe−1)
and has the form lðcgsÞ ¼ 1þ 4pvvol . If 4pvvol � 1, the permeability can be replaced by
unity and the familiar textbook form of Curie’s Law is recovered. (This approximation is
frequently the case for antiferromagnetic systems. Discussion of the correct form of the
susceptibility when the approximation is not valid appears in the following section.)

Curies’s law ðcgs� emuÞ : vmol ¼
C

T
ð1þ 4pvvolÞ �

C

T
(34)

In the SI system, the permeability is found from equation (1):
B=H ¼ l0ð1þM=HÞ ¼ l0ð1þ vvolÞ. This ratio is not dimensionless but has the dimen-
sions of μ0 (T m A−1). In the limit of χvol ≪ 1, the SI permeability reduces to μ0 and the SI
version of Curie’s Law is found.

Curies’s law ðSIÞ : vmol ¼ l0ð1þ vvolÞ
C

T
� l0

C

T
(35)

2.3.1. Curie constants. The units of molar susceptibility in the two unit systems were
derived in Section 1 and found to be cm3 mol−1 and m3 mol−1 for the cgs and SI systems,
respectively. The expression for the Curie constant of spin S is given as equation (33). The
units of C arise from those of Avogadro’s number (mol−1), the Bohr magneton (erg G−1 or
J T−1), and Boltzmann’s constant (erg K−1, or J K−1). Using the values of these fundamental
constants listed in Appendix A leads to the following expressions for the respective Curie
Constants.

†The symbol for the permeability is unfortunately the same as that of magnetic moment. To avoid confusion, the B/
H ratio will be used in this section.
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CðcgsÞ ¼ 0:12505 g2SðS þ 1Þ erg � K
G2 � mol ¼ 0:500

g

2

� �2
SðS þ 1Þ emu � K

G � mol : (36)

In determining the final set of units above, the equality 1 erg G−1 = 1 emu was used.
Curie’s Law requires that the units of Mmol/H (emu G−1 mol−1) must equal those of the
molar susceptibility, cm3 mol−1 [equation (14a)] so an additional step is required.

vmol
cm3

mol

� �
¼ C

T

emu

Gmol

� �
� B
H

G

Oe

� �
¼ C

T

B

H

emu
emu
cm3

� �
mol

¼ cm3

mol

 !
; (37)

where the equality from Section 1.2 (one Oe = one emu cm−3) was used. Notice that the
units of the B/H ratio were required to recover the correct susceptibility units.

Repeating the calculation for the Curie constant in SI units leads to the following
expression:

CðSIÞ ¼ 1:2505 g2 SðS þ 1Þ J 2K

T 2mol

� �
¼ 5:002

g

2

� �2
SðS þ 1ÞAm2K

T mol
(38)

The numerical factor is 10 times that of CS(cgs) but the units of CS(SI) divided by
temperature are not equal to those of the SI susceptibility, m3 mol−1. This discrepancy
occurs because CS(SI) must be multiplied by μ0 (T m A−1) to equal vmolðSIÞ. The product
μ0CS(SI) does have the units of the SI molar susceptibility.

l0CðSIÞ ¼ 5:002 l0
g

2

� �2
SðS þ 1Þm

3K

mol
(39)

Permeabilities vary with the size of the applied field and need to be determined experi-
mentally. For this reason, many scientists new to magnetism in SI units are surprised to find
an experimental ratio (B/H) in the theoretical expression for the Curie constant. However,
the definition of the magnetic susceptibility assumes the limiting case of a vanishing H-field
so it is always possible to use the limiting value of μ0 for the permeability. This justification
is explained at greater length in the following section.

2.4. Demagnetization corrections to experimental susceptibilities

The fundamental definition of the susceptibility, equation (6), depends on the value of the
H-field applied to each individual moment; in this section, this value is designated as the
internal field, Hint. For an unmagnetized sample, the external field Hext (created by a
solenoid or electromagnet) equals the internal field. However, once the sample becomes
magnetized, Hint is reduced by an amount which depends both on the shape of the sample
and its magnetization,

Hint ¼ Hext � NMvol; (40)

where N is known as the demagnetizing factor. (In SI units N varies between 0 and 1, while
the range is between 0 and 4π for cgs units.) The true susceptibility depends on the value
of Hint but the measured susceptibility is based on the value of the external H-field, Hext.
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vvolðtrueÞ ¼ lim
H!0

Mvol

Hint
¼ Mvol

Hext � NMvol
¼ Mvol=Hext

1� NMmol=Hext

	 

¼ vvolðmeasÞ

1� NXvolðmeasÞ; (41)

where vvolðmeasÞ ¼ Mvol=Hext. As the product NvvolðmeasÞ becomes insignificant compared
to one, the measured susceptibility approaches the true susceptibility.

The corresponding equation for the molar susceptibility follows from the equality
vvol ¼ vmolq=FW :

vmolðtrueÞ ¼
vmolðmeasÞ

1� Nq
FW vmolðmeasÞ

(42)

When studying antiferromagnets, it is rarely necessary to use equation (42) instead of the
fundamental definition of Mmol/H. As an illustration of this point, consider the magnetic sus-
ceptibility of copper pyrazine bisnitrite, figure 5. This monoclinic compound [15] (C2/m)
consists of chains of pyrazine-bridge copper(II) ions along the b-axis, with oxygen atoms
from the nitrite ions completing the square planar coordination. Adjacent chains are well
separated, creating a magnetically 1-D compound. The density of CuPz(NO2)2 is
2.13 g cm−3 with the formula weight of 235.7 g mol−1. As seen in figure 5, the maximum
susceptibility [16] of 0.032 cm3mol−1 occurs near 4.6 K. The sample was polycrystalline
and enclosed in a gelatin capsule, so we use the demagnetizing factor of a sphere in cgs
units, 4π/3. Using these values, the maximum value of Nq

FW vmol ¼ 0:0013, which is insignifi-
cant compared to 1 in the denominator of equation (41) so the demagnetization effects can
be ignored.

There are certain conditions that require demagnetization corrections. Materials that order
with spontaneous moments (ferromagnets, ferrimagnets) have extremely large
susceptibilities near their critical temperatures and demagnetization corrections are essential.
In addition, paramagnetic high-spin molecules have been found with spin values as large as
83/2 [17]. Since the Curie constant is proportional to S(S + 1), the measured susceptibility

Figure 5. The temperature dependence of the magnetic susceptibility of copper pyrazine bisnitrite in cgs-emu
units. The solid line corresponds to the prediction for the magnetic susceptibility of a 1-D Heisenberg S = 1/2 anti-
ferromagnet with an exchange strength of 7.3 K, a Curie constant (CC) of 0.408 cm3 Kmol−1, with zero correction
due to paramagnetic impurities. Unpublished results.
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becomes very large for these compounds, also requiring corrections. A third case involves
measurements of paramagnets at very low temperatures. Thirty years ago, a temperature of
5 K was considered low by magnetochemists but now measurements down to 50 mK
(0.05 K) are increasingly common. A paramagnetic compound with no need for a demagne-
tizing correction at 5 K will most likely need one at such low temperatures.

This section concludes with an interesting effect that occurs when studying compounds
with spontaneous moments. Inverting equation (41) to solve for χvol(meas) in terms of the
true susceptibility leads to equation (43):

vvolðmeasÞ ¼
vvolðtrueÞ

1� NvvolðtrueÞ
� � 1

N
; for large vvolðtrueÞ (43)

As the sample approaches the critical temperature, the true susceptibility χvol(true)
increases without limit and the measured susceptibility approaches a limiting value of −N−1

as T→ TC. For T ≤ TC, the measured response is a constant, with a value depending only
on the shape of the crystal.

3. Interactions and anisotropies

Section 2 explored the effects of temperature and a magnetic field on a collection of non-
interacting moments that had no preference for their orientation in space. The field-induced
magnetization was the same for all orientations of the external field.

Magnetism becomes rich in possible behaviors when the moments interact with each
other as well as with the field. When the interactions are 3-D in nature, spontaneous ordered
states appear at temperatures proportional to the exchange strength. The nature of the result-
ing ordered state depends strongly on single-ion and exchange anisotropies present in the
compound. These topics are explored in the present section.

3.1. The molecular field and the Curie–Weiss law

In the previous section, the magnetization of a collection of independent magnetic moments
in an applied field was calculated as a function of temperature, leading to Curie’s Law. The
magnetic behavior resulted from competition between the Zeeman energy, minimized as the
moments align with the field, and the thermal energy that induces fluctuations away from
the energy minimum. (Mathematically, this competition appears as the argument of the
Brillouin function.) Lowering the temperature reduces the size of the thermal fluctuations,
resulting in an increased magnetization.

What if the spins are not independent but interacting? The ability of an external field to
orient a specific moment against thermal fluctuations now also depends on the orientations
of the moment’s neighbors. However, their orientations depend on the value of the field, the
temperature, and the orientations of their neighbors! This is a classic many-body problem in
which we cannot derive an expression for the magnetization until we already know the
orientation of all the moments. Many-body problems frequently display interesting complex
behavior but are difficult to analyze.

The first successful solution of a magnetic many-body problem was obtained by Pierre
Weiss in 1907 [18]. He considered a collection of N interacting moments and made the
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simplest possible approximation† to describe the interaction. He assumed the field acting on
a moment equaled the sum of two terms; the external field B itself, plus a “field” proportional
to the magnetization of the sample. He called this new field the “molecular field” because it
arose from the other molecules in the sample. The total field Btot was then given as

Btot ¼ Bþ kM ; (44)

where λ is the proportionality constant between the magnetization and the molecular field.
The Btot field was then used in the derivation of Curie’s Law [equation (19)] and once again
results in the hyperbolic tangent (for S = 1/2) but with the external field B replaced by Btot

in the argument:

Mmol ¼ NglB
2

tanh
glBBtot

2kBT

� �
¼ Msat tanh

glBðBþ kMÞ
2kBT

� �
(45)

There is no analytical solution for equation (45) for any temperature or field; we are seek-
ing Mmol but its value depends on the hyperbolic tangent of itself. Solutions for the general
case can be found graphically and numerically. However, in the high-temperature/low-field
limit, this equation can be easily solved. This limit corresponds to the situation when the
argument of the hyperbolic tangent is small compared to one. In this case, the value of the
hyperbolic tangent is closely approximated by its argument: tanh(x) ≈ x, for x≪ 1.

Mmol ¼ Msat tanh
glBðBþ kMmolÞ

2kBT

� �
¼ NðglBÞ2

4kBT
ðBþ kMmolÞ ¼ C

T
ðBþ kMmolÞ (46)

Collecting terms in Mmol leads to the following equation:

Mmol 1� kC
T

� �
¼ C

T
B ) Mmol

T � kC
T

� �
¼ C

T
B ) Mmol ¼ C

T � kC
B (47)

The final form of equation 47 shows that, in the limit of small B/T, M remains propor-
tional to the field so the susceptibility can once again be defined. In the following
equations, we replace the product λC by θ which we define as the Curie–Weiss temperature:
θ ≡ λC.

v� lim
H!0

Mmol

H
¼ lim

H!0

C

T � h
B

H
(48)

The ratio B/H appears in equation (48) just as it did for the derivation of Curie’s Law in
the previous section. Depending on the system of magnetic units being employed, the final
forms appear as:

Curie�Weiss law ðcgs-emuÞ : vmol ¼
C

T � h
ð1þ 4pvvolÞ ffi

C

T � h
(49a)

†Weiss’s success proves that there is nothing wrong with making an assumption, even if it is clearly unreasonable.
Having a solution to the problem can provide important insights even if the solution is quantitatively invalid.
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Curie�Weiss law ðSIÞ : vmol ¼ l0ð1þ vvolÞ
C

T � h
ffi l0

C

T � h
(49b)

The form of the susceptibility in equation (49) is known as the Curie–Weiss Law. It shows
that an interaction between moments modifies Curie’s Law by subtracting the Weiss temper-
ature θ from the sample temperature T. If the interaction is positive (meaning the moments
prefer to align parallel), λ is positive and the Weiss temperature is positive. As a result, at
any temperature, the susceptibility in the presence of the interaction is greater than it would
be in the absence of an interaction. A positive interaction is called a ferromagnetic one, as
found in ferromagnets such as the elements iron, cobalt, nickel, and gadolinium.

It may seem curious that a stronger field, the molecular field, shows up as a reduced
temperature in the susceptibility equation, but it is a natural consequence of Boltzmann’s
relationship. The magnetization is related to the argument of the hyperbolic tangent in equa-
tion (45) where the argument is gμB(B + λMtot)/(2kBT). Increasing the numerator has the
same effect as decreasing the denominator; either action increases the argument. It follows
that a negative interaction (an antiferromagnetic one), in which the moments tend to lie in
opposite directions, has the effect of reducing the effective field; that in turn is equivalent to
raising the temperature of the sample.

vmol ¼
C

T � h
¼ C

T � 10K
; ferromagnetic interactions; h ¼ þ10K

vmol ¼
C

T � h
¼ C

T þ 10K
; antiferromagnetic interactions; h ¼ �10K (50)

In practice, the Curie–Weiss formula is able to reveal the existence of interactions, even
when they are weak compared to the lowest measured temperature. Consider the behavior
of the inverse susceptibility, 1/v [equation (51)]. It is proportional to (T – θ), with a slope
equal to the reciprocal of the Curie constant and a temperature intercept equal to the
Curie–Weiss constant. At temperatures high compared to |θ|, v�1 will increase linearly with
temperature but with a non-zero intercept. (The plot of v�1 versus temperature is known as
a Curie–Weiss plot.) The intercept with the temperature axis provides information about
both the sign and the magnitude of the dominant interaction.

1

vmol
¼ T � h

C
¼ 1

C
ðT � hÞ (51)

The inverse susceptibilities for several low-dimensional magnetic models are plotted in
figure 6, along with straight lines representing the high-temperature limiting behavior for
the models. It is clear that at low temperatures, there are significant differences between the
high-temperature limits and the low-temperature behavior. As will be shown in the follow-
ing section, the inverse susceptibility for the S = 1/2 Heisenberg dimer agrees within 1% of
its high-temperature limit only for temperatures exceeding 50 J/kB. As observed in figure 6,
the temperature intercept for the dimer is θdimer = –|J|/4kB, so the high-temperature limit is
only found for T > 200 θdimer! For this reason, most experimental reports of Curie–Weiss
parameters for dimers in the literature are inaccurate because the data have not been
collected to high-enough temperatures.
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Molecular field theory [19] provides a formula for the Curie–Weiss constant in terms of
the number of nearest neighbors z, the spin value S and the nearest-neighbor exchange
strength J (single J format).

hðSÞ ¼ zSðS þ 1ÞJ
3kB

; h
1

2

� �
¼ zJ

4kB
(52)

with J positive/negative for ferro/antiferromagnetic interactions. The Curie–Weiss intercepts
in figure 6 are in agreement with this formula for the square lattice and chains have four and
two nearest neighbors, respectively, yielding θ-values of –J/kB and –J/2kB and +J/2kB for the
antiferromagnetic layer and the antiferromagnetic and ferromagnetic chains, respectively.

In our own research, we plot data in three standard formats: vmol versus T; v
�1
mol versus T;

and vmolT versus T. We find the third option (the “χT” plot) to be the most versatile in that
it is the most sensitive to the presence of interactions. It also has the advantage that at high
temperatures the vmolT product will numerically approach the value of the Curie constant. It
is the only format in which the value of C is obvious. To illustrate these points, the suscep-
tibility of the linear chain antiferromagnetic compound Cu(pzdo)Cl2(H2O)2 (pzdo = pyrazine
dioxide) is plotted in both the Curie–Weiss and χT formats [20] in figure 7. This compound
has weak antiferromagnetic interactions, corresponding to θ = –6.3 K and leading to a
maximum in susceptibility at 7 K. However, although the Curie–Weiss parameter is small,
the χT product very clearly shows a significant decrease from the room-temperature value
by 150 K.

It is necessary to warn about inappropriate applications of the Curie–Weiss plot. There
have been so many of these that Van Vleck, a pioneer in magnetism who shared the 1974

Figure 6. The inverse susceptibilities (in dimensionless units) are plotted as a function of relative temperature
kBT/|J|, where |J| is magnetic interaction strength. The open symbols correspond to the calculated values for the
2-D S = 1/2 antiferromagnetic layer (☐), the 1-D antiferromagnetic chain (Δ), the antiferromagnetic dimer (o), and
the ferromagnetic chain (∇). The solid lines are the corresponding Curie–Weiss lines that represent the
high-temperature behavior of these susceptibilities.
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Nobel prize in Physics, once wrote an article [21] entitled “The Curie–Weiss Law; the most
overused equation in magnetism”.


 Curie’s law and the Curie–Weiss law are derived by assuming that the arguments of
the hyperbolic tangent (and more generally, the Brillouin function) were very small,
i.e. at the limit of low fields/high temperatures. These laws are not valid when the
argument is greater than 0.15.

In practice, it is not easy to say at what temperature the equation becomes valid
but a good guide is that the temperature should be many multiples of the magnitude
of the Curie–Weiss temperature; how many multiples depends on the dimensionality
of the magnetic lattice, the number of nearest neighbors (NN), and the spin value.
The Heisenberg dimer is an extreme case for each S = 1/2 moment has only one NN,
but comparison of the susceptibilities of 1-D and 2-D S = 1/2 models to the
Curie-Weiss expression shows that multiples of 80 θ and 40 θ are required to assess
the θ-value to within 1%. In contrast, 3-D models are much better approximated by
equation (51), with multiples of 3 θ being sufficient.


 The Curie Law and Curie–Weiss law are only valid for temperature-independent
moments, such as Mn(II) and Cu(II). Ions with unquenched orbital angular
momentum have internal energy levels corresponding to different ml values and the
populations of these levels change with temperature. Consequently, the size of the
ion’s moment changes with temperature and the Curie–Weiss law does not apply.


 The Curie–Weiss temperature θ (also known as the Weiss constant or Curie–Weiss
constant) is sometimes, incorrectly, referred to as a magnetic ordering temperature at
which the paramagnetic moments mutually align into a state of long-range order. The
origin of this concept appears in figure 6. The Curie–Weiss constant for the
ferromagnetic chain has a positive value of 0.5 kBT/|J|, implying the formation of a
spontaneous moment at finite temperature even in zero field. 3-D magnetic lattices do

Figure 7. Magnetic susceptibility of Cu(pzdo)Cl2(H2O)2 plotted both as vmolT vs. T and 1=vmol vs. T.
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order at temperatures comparable to θ, but as will be discussed in Section 4, 1-D
lattices never do. The existence of a finite θ does not imply the existence of ordering.

3.2. Exchange interactions: the S = 1/2 Heisenberg Dimer

Magnetism exists because the orientation of a moment affects the orientations of other
moments. Fundamentally, this interaction is an electrostatic one at the atomic level, where
the rules of quantum mechanics apply. The electrostatic energy of two overlapping elec-
tronic wave functions is reduced if they have opposing moments, thus favoring antiferro-
magnetic alignments. If the two wave functions are orthogonal to each other, their moments
align in a parallel fashion. Evaluating the electrostatic energy involves the exchange terms
in the symmetric or antisymmetric wave functions, so this interaction energy is often called
the exchange energy. The literature on exchange interactions is broad and deep and will not
be summarized in this tutorial. References to many of the standard sources are provided in
the first seven references.

The most common interaction is the Heisenberg interaction, for which the energy
depends only on the mutual orientation between interacting spins, with the energy of inter-
action equal to the prefactor J times the spin’s dot product. There is no contribution to the
energy that would favor a preferential orientation along a specific axis. For this reason, the
Heisenberg interaction is isotropic.

H ¼ �JSi � Sj ¼ �J
X

½Sxi Sxj þ Syi S
y
j þ Szi S

z
j � (52a)

H ¼ �2JSi : Sj (52b)

Equation (52a) has been written in the single-J format with a negative sign. The dot
product is maximized by parallel spins; for a positive J, parallel spins have the lowest
energy so a positive-J corresponds to a ferromagnetic interaction, with negative-J corre-
sponding to the antiferromagnetic case.

For such a simple equation, a great deal of confusion appears in the literature because
equation (52a) is not universally used. Until 30 years ago, the two-J format [equation
(52b)] was the most common form in both the physics and chemistry literature. Physicists
then began to employ the single-J form, which eliminated the need to carry around the
factor of two.

It gets worse, for another variation of the Hamiltonian is common. When studying an
explicitly antiferromagnetic system, via either theory or experiment, the need to use nega-
tive values for the exchange strength can be eliminated using the positive form of the
Hamiltonian, equation (53). Using that format, a positive interaction corresponds to a
ground state with antiparallel moments. As you would expect, both the single J and 2J
forms are found. Currently, four common forms of the Heisenberg interaction are in use,
those appearing in equations (52) and (53). If the authors of an article did not explicitly
state the form they used, readers will be unsure of the magnitude of the exchange strength
of the material,† to within a factor of two, as well as uncertain of the sign. To avoid
confusion, it is necessary for every scientific article to display the Hamiltonian employed to
facilitate comparison of results.

†Use of both thermal units (K) and spectroscopic units (cm−1) also confuses the literature.
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H ¼ JSi � Sj (53a)

H ¼ 2JSi � Sj (53b)

In the following discussion, we will use the positive, single-J form of the Hamiltonian
[equation (53a)] because most of the examples to be presented will be antiferromagnetic.

We illustrate the use of the Heisenberg interaction by analyzing the simplest interacting
system, the S = 1/2 Heisenberg dimer.† Two spins, S1 and S2, interact according to the Ham-
iltonian 53a. The spins can couple to form an Stot = 0 singlet state and an Stot = 1 triplet
state, where Stot is the total spin for the system. The energies of the states depend on their
mutual orientation.

S1 � S2 ¼ 1

2
½Stot � Stot � S1 � S1 � S2 � S2� ¼ 1

2
½StotðStot þ 1Þ � 3

4
� 3

4
� (54)

The respective energies for the singlet and triplet states are −3J/4 and J/4, respectively.
The energy of the singlet state can be defined to be zero, placing the triplet state an energy
J higher (figure 8).

It is a simple calculation to show that the susceptibility for a mole of dimers is given as

vmol dimers ¼
2NAðglBÞ2

3kBT

3expð�J=kBTÞ
3þ expð�J=kBTÞ ¼

CðS ¼ 1Þ
T

3expð�J=kBTÞ
3þ expð�J=kBTÞ (55a)

The susceptibility of a mole of moments immediately follows by dividing that of the
mole of dimers by two and using the relationship: C(S = 1) = 8C(S = 1/2)/3.

vmol moments ¼
4CðS ¼ 1=2Þ

3T

3expð�J=kBTÞ
3þ expð�J=kBTÞ (55b)

The antiferromagnetic dimer has a rounded susceptibility (χmax occurs at Tmax = 0.624 J/
kB) that descends to zero exponentially at low temperatures [figure (9a)]. In contrast, the
susceptibility of the ferromagnetic dimer increases without limit at low temperatures.

More insight into the ferromagnetic behavior is provided by the χmolT product
[figure (9b)]. As the temperature approaches zero, χmolT for the ferromagnetic dimer
increases by one-third over its high-temperature value, approaching the S = 1 Curie con-
stant, as all the dimers drop into the triplet ground state at low temperatures. For higher
temperatures (T > 4J/kB), the product drops to 0.75 C(S = 1), as all four energy levels are
occupied equally. A rise in χmolT upon cooling is a signature of ferromagnetic interactions.

While the susceptibility (magnetic response as function of temperature at constant field)
is calculated from the occupation fraction of the energy levels in the limit of zero field, the
magnetization (induced moment as a function of field at constant temperature) is calculated
from changing the occupation fractions of the energy levels as the field is varied. As seen
above, the susceptibility is a function of the zero-field energy gap Δ between the singlet
ground state and the triplet excited state; for the dimer, Δ = J. For the magnetization, the

†It is important to recognize the distinction between a mole of moments and a mole of dimers. This leads to an
additional factor-of-two confusion.
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mS = ±1 energy levels vary as a field is applied (figure 8); so, the occupation fractions of the
levels vary with both temperature and field, leading to the following expression [equation
(56)] for the magnetization of the S = 1/2 Heisenberg antiferromagnetic dimer.

Figure 9. (a) The normalized molar susceptibilities (vmol /C(S = 1)) of the ferro-and antiferro-magnetic Heisenberg
S = 1/2 dimer are plotted as a function of relative temperature kBT/|J|. (b) The normalized vmolT products are plotted
against the same temperature scale.

Figure 8. Energy level diagram for an antiferromagnetic Heisenberg S = 1/2 dimer in an applied field. Note that it
is possible even in zero-field for the S = 1 state to be split into doublet (ms = ± 1) and singlet (ms = 0) states. See
Section 3.5.
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MðB; TÞ ¼ NglBsinhðglBB=kBTÞ
expð�glBB=kBTÞ þ 2coshðglBB=kBTÞ þ 1

(56)

The magnetization in figure 10 represents the balance of three different energies: the
exchange energy J, the field energy gµBB, and the thermal energy kBT. The exchange
strength determines the size of the zero-field energy gap, the field energy controls the size
of the effective gap Δeff = J – gµBB, and the thermal energy controls the relative occupation
of the energy levels.

In the antiferromagnetic dimer, when B and T are relatively small, only the singlet state
is occupied and molar magnetization remains very small. With small T and increasing field,
the effective gap is reduced by the Zeeman energy, and vanishes at the critical field
Bc = J/gμB. At Bc, the ground state changes from the singlet to the ms = –1 sublevel, at
which point the magnetization rapidly rises to its saturation value. As the temperature is
raised, the magnetization process spreads over an increasingly broad range of field. At
T ≈ 0.5 J/kB, almost all of the upward curvature in the magnetization has disappeared; all
trace of the existence of the critical field has vanished by T ≈ J/kB. Figure 10 provides a
clear example of why magnetization experiments yield the most information when carried
out at the lowest possible temperatures.

3.3. Paramagnetic susceptibilities of exchange coupled spin networks

The fundamental experiment for exploring a new magnetic material is a study of the tem-
perature-dependent susceptibility. This data can be compared to the predicted susceptibility
of an appropriate model by which one can learn the value of the Curie constant of the
compound, the existence or absence of interactions, as well as the sign, magnitude, and
nature (Ising, Heisenberg) of the interaction. Given the importance of the susceptibility, we
discuss it in detail.

Figure 10. Magnetization of the S = 1/2 Heisenberg antiferromagnetic dimer as a function of temperature and
field. At T = 0, the magnetization jumps discontinuously at the critical field BC = J/(gμB). The dependence of the
magnetization upon field and temperature [equation (56)] is characteristic of many systems with spin-singlet ground
states.
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Our examples will be taken from extended networks of spins, rather than from finite
clusters. The primary reason for this choice is simplicity; even though there may be millions
of spins in a linear chain compound, all the spins will be the same and there will be only
one exchange interaction. The behavior of the susceptibility can be understood simply in
terms of the competition between the exchange and Zeeman energies.

Contrast that simplicity with the complex nature of the fundamental molecular magnet
[22] known as Mn12. This compound contains two different ions (eight Mn(III) and four
Mn(IV)) which have different moments and different single-ion anisotropies which are not
co-axial (see the following section). There are at least four different exchange interactions
present in this spin cluster and more than 10 million possible eigenstates [23]. Computation
of the susceptibility of this compound, possible in principle, is beyond the power of current
computers while an intuitive understanding of the role of the various parameters is likewise
out-of-reach.

A secondary reason for the emphasis on extended magnetic lattices is the scarcity of
good reviews of the advances in this field. In contrast, the high degree of research activity
in high-spin molecules† for the past two decades has already created a growing number of
review articles [24], books [25], and book chapters [26] in this field.

There are additional reasons for choosing examples of extended spin networks. Theoreti-
cal modeling of spin systems has advanced rapidly over the past dozen years due to
improvements in simulation techniques such as Quantum Monte Carlo, the availability of
user-friendly software [27], and the ever-increasing speed and memory of inexpensive com-
puters. As a result, there are now numerical expressions for the susceptibility of a wide vari-
ety of low-dimensional (1-D or 2-D) magnetic models with one or more exchange
parameters that can be used to characterize ever-more complex compounds. Use of these
same techniques has also led to quantitative insight into the influence of an interaction in
the third direction upon the transition to long-range order of the low-dimensional magnets
[28] (see Section 4).

3.3.1. Paramagnetic susceptibilities of uniform exchange-coupled spin networks.

3.3.1.1. One-Dimensional S = 1/2 Heisenberg Antiferromagnet (1-D QHAF). The most
common source of spin-1/2 ions with isotropic exchange is Cu(II) ions with one unpaired
electron. The orbital angular momentum of this electron is mostly quenched by the ligand
field so the average g-factor 〈g〉 ≈ 2.12–2.15 and the moment of the ion has nearly no pref-
erence for alignment along a particular crystalline axis.‡ For this reason, the exchange inter-
action is essentially isotropic and is defined by the single J Heisenberg Hamiltonian H =
JΣSi·Si+1, equation (53a), in which antiferromagnetic interactions have a positive sign.

One-dimensional lattices occur when the Cu(II) ions are joined by bridging ligands along
an axis and when the coordination sites not involved in bridging are capped by terminal
ligands. Two famous examples of such lattices are µ-pyrazine dinitrocopper(II) [29] and
bispyridine dichlorocuprate [30], as shown in figure 11. In the first compound, the copper
atoms in Cu(pz)(NO3)2 are bridged into chains by the neutral 1,4-diazines while the nitrate
anions serve as capping ligands about the metal, providing excellent 1-D isolation of the
chains. In contrast, the anions in Cu(py)2Cl2 bridge the metal cation to form the chain. The
copper ions have short bonds to two chloride ions (Cu–Cl = 2.298 Å) and the two pyridine

†Also known as single-molecule magnets (SMM) and nanomagnets.
‡Further details are included in Section 3.5.
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molecules are coordinated to the coppers by the nitrogen atoms (Cu–N = 2.004 Å). The
axial sites of the metal ions involve semi-coordinate bonds (Cu–Cl = 3.026 Å) to the chlo-
rides bonded to the adjacent copper neighbors, forming a structural chain. The steric bulk
of the pyridine molecules prevents adjacent chains interacting magnetically with each other,
resulting in a 1-D magnetic lattice in a 3-D crystal.

The magnetic susceptibilities of Cu(pz)(NO3)2 (squares) and Cu(py)2Cl2 (circles) are pre-
sented in figure 12. Both data sets display rounded maxima at low temperatures but remain
finite at the lowest temperatures. This is in contrast with the susceptibility of the previously
discussed dimer (figure 9). Notice that the Cu(pz)(NO3)2 data set has a larger maximum

(A) (B) 

Figure 11. Uniform Cu(II) chains: (A) Cu(pyrazine)(NO3)2 (pyrazine-bridged Cu(II) ions). (B) Cu(pyridine)2Cl2
(bihalide-bridged Cu(II) ions).

Figure 12. Magnetic susceptibilities of Cu(pz)(NO3)2 (☐) and Cu(py)2Cl2 (o). The solid lines are the best-fit rep-
resentations of the 1-D QHAF susceptibility with exchange constants of 10.6 K, and 27.3 K, respectively (single-J
format).
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susceptibility (χmax) at a lower temperature (Tmax) than the corresponding χmax, Tmax of the
Cu(py)2Cl2 data set. Numerical studies [31] of the susceptibility of the 1-D QHAF have
shown that this behavior is universal: Tmax and χmax are respectively, proportional to, and
inversely proportional to, the strength of the exchange constant. Consequently, their product
is independent of temperature.

Tmax ¼ 0:640851
J

kB
(57)

vmax ¼ 0:146926
Ng2l2B

J
(58)

For molar susceptibilities with N =NA, the product of χmaxTmax in cgs units is given
below.

vmaxTmax ¼ 0:035323 g2
cm3K

mol
(59)

Based on analytical and numerical studies of the 1-D QHAF susceptibility [31 and refer-
ences therein], a useful expression for the temperature dependence of the susceptibility has
been obtained [equation (60)] where the coefficients Ni, Di are given in table 1. Note that
this expression is also based on the positive, single J form of the Hamiltonian [equation
(53a)] for which a positive number corresponds to antiferromagnetic interactions.

vmol ð1DQHAFÞ ¼ Cmol

T

1þP5
i¼1 Ni

J
kBT

� �i
1þP6

i¼1 Di
J

kBT

� �i
2
64

3
75 (60)

By comparing the experimental data in figure 12 to equation (60) and allowing the values
of both J and C to vary, the solid lines in the figure were obtained, corresponding to
exchange strengths of 10.6 K and 27.3 K for Cu(pz)(NO3)2 and Cu(py)2Cl2, respectively.

Table 1. Coefficients of the susceptibility formula for the 1-D QHAF and the 1-
D QH FM [both equation (60)], and the 2-D QHAF [equation (61)].

Parameter 1-D QHAF 1-D QH FM 2-D QHAF

N1 −0.053837836 1.736278 −0.998586
N2 0.097401365 1.07588 −1.28534
N3 0.014467437 0.12081 −0.656313
N4 0.0013925193 0.235862
N5 0.00011393434 −0.277527

D1 0.44616216 1.24008 1.84279
D2 0.32048245 0.42784 1.14141
D3 0.13304199 0.00272 0.704192
D4 0.037184126 −0.00002 −0.189044
D5 0.00026467628 0.277545
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It may seem curious that the susceptibility of the 1-D QHAF remains finite at zero
temperature while that of the S = 1/2 Heisenberg antiferromagnetic dimer decreases expo-
nentially to zero at low temperatures (figure 9) since each system contains S = 1/2 moments
and antiferromagnetic interactions. This question was first answered in 1964 in a profoundly
influential article by Bonner and Fisher [32]. In both systems, the ground state is a non-mag-
netic singlet with a triplet as the first excited state, and the singlet–triplet energy gap Δ is
proportional to J. In this numerical study of finite chains with N-spins, it was found that the
singlet–triplet gap Δ approaches a value Δ = J/N as N becomes large. In the limit N→∞,
the gap vanishes and the energy spectrum becomes a continuum. At any finite temperature,
moment-bearing states are thermally occupied and the material has a field-induced moment.

Surprisingly, the 1-D QHAF has a finite susceptibility even at absolute zero. Although
the chain is in the singlet state in zero-field, any applied magnetic field is a perturbation to
the Hamiltonian which mixes moment-bearing states into the ground state, resulting in a
finite susceptibility.

1-D S = 1/2 Heisenberg ferromagnets (1-D QHFM) also exist [33] although they are less
common than 1-D QHAF. The susceptibility of the 1-D QHFM has been obtained [34] and
can be expressed in a similar form as equation (60). The corresponding coefficients for the
ferromagnetic chain are also given in table 1. The susceptibilities of ferromagnets diverge at
low temperature; for this reason, plots of these susceptibilities are often presented in the χT
versus T format in which the paramagnetic T−1 dependence has been removed. The χT
products of the 1-D and 2-D QHFMs are presented as a function of kBT/J in figure 13; a
log–log scale has been used to accommodate the divergence at low temperatures.

3.3.1.2. Two-Dimensional S = 1/2 Heisenberg Antiferromagnets (2-D QHAF): isotropic and
rectangular. Common 2-D lattices can be said to consist of a series of 1-D chains, exchange
strength J, that are cross-linked into a 2-D net by a second interaction αJ, 0 ≤ α ≤ 1,
scheme 1. In the limiting case α = 0, the chains are isolated; when α = 1, a square (or isotro-
pic) lattice is formed. The intermediate cases of 0 < α < 1 correspond to rectangular lattices.

Figure 13. Theoretical predictions for the vT=C products of the 1-D and 2-D QH ferromagnets. Notice the log–
log scale.
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Note: in this section, we only discuss 2-D lattices that have an even number of nearest neigh-
bors such as square or rectangular lattices. These are the so-called bipartite lattices in which
there are no competing interactions and the Néel state of alternating up and down spins is
applicable. Triangular, hexagonal, and kagomé lattices have an odd number of nearest neigh-
bors and do not have unique antiferromagnetic ground states. For this reason, they are said to
be frustrated. Their behavior is quite complex [35] and will be discussed further in Section 4.

Isotropic 2-D QHAF: Interest in the uniform 2-D QHAF model surged after the discovery
of the copper-oxide-based high-temperature superconductors [36], such as La2–xSrxCuO4+y.
These compounds contain layers of copper ions joined into a square lattice by bridging
O2– ions with an antiferromagnetic interaction estimated to be close to 2000 K. The high
superconducting temperatures (in excess of 100 K, depending on the Sr-doping level) have
been thought to arise from the antiferromagnetic interaction. To date, however, the explana-
tion for these record superconducting temperatures remains unknown.

Based on many analytical and numerical studies [37] of the 2-D QHAF model, a useful
expression [38] for the temperature dependence of the susceptibility has been obtained
[equation (61)] which can be used to determine exchange strengths from experimental data.
It has a similar, but not identical, form to equation (60). The appropriate coefficients for the
2-D case are contained in table 1. This expression is also based on the single-J form of the
Hamiltonian, equation (53a).

vmol ð2DQHAFÞ ¼ Cmol

T
1þ

P5
i¼1 Ni

J
kBT

� �i
1þP5

i¼1 Di
J

kBT

� �i
2
64

3
75 (61)

The dimensionless (reduced) susceptibility χmolJ/(kBC) of the 2-D QHAF is plotted as a
function of the dimensionless (relative) temperature kBT/J in figure 14. For comparison
purposes, the figure also contains the reduced susceptibilities of other Heisenberg
antiferromagnets: the S = 1/2 dimer, an alternating chain with α = 0.50, the 1-D QHAF, and
an isotropic spin ladder for which Jrung = Jrail.

Scheme 1.
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The 2-D QHAF is similar to the 1-D QHAF in that their energy spectra are continuous,
leading to finite values of the susceptibilities at all temperatures. The 1-D and 2-D QHAF
have two and four nearest neighbors (NN), respectively, resulting in the 2-D susceptibility
having a smaller maximum value that occurs at a higher relative temperature; in addition, it
has a smaller value at T = 0.

The 2-D QHAF model is based on a square lattice in which each moment has equivalent
exchange interactions J to its four nearest neighbors. A good approximation to this 2-D
model may be found in a 3-D crystal with a fourfold axis provided the interlayer interac-
tions J′ are much smaller than J. However, a true fourfold axis is not required; C-centered
lattices also satisfy the requirement that all four NN-intralayer interactions are equivalent.†

We have used this principle to synthesize a number of quasi-2-D QHAF.
Copper pyrazine perchlorate [39] [Cu(pz)2(ClO4)2, figure (15A)] consists of layers of Cu

(II) ions coordinated to four bridging pyrazine molecules within the layers while the per-
chlorate groups are located in the axial sites of the copper ions coordinate sphere in the
common 4 + 2 configuration. At room temperature, the space group is C2/m, but it converts
to C2/c below 180 K [40]. Due to the bulk of the perchlorate groups, adjacent layers are
shifted by a/2, b/2, with the perchlorate ions packing into the volume surrounded by the
pyrazine molecules. This arrangement leads to a large distance (8.54 Å) between nearest
copper sites in adjacent layers and accounts for the small exchange ratio (J′/J ≈ 10−3) found
for this compound [41]. The intralayer exchange through the pyrazine molecules is 17.5 K
(single J format) which is the largest found for the family of copper/pyrazine molecules.

Analogous C-centered structures can be found in the family of compounds (AH)2CuX4

in which AH is a substituted pyridinium ion and X = Cl, Br. The steric bulk and hydrogen-
bonding capabilities of the organic molecules determine the ultimate structure. Figure 15B
illustrates the structure with A = 5-bromo-2-aminopyridine (aka 5BAP) and X = Br [42].
Similar structures [43] are found with 5-chloro-2-aminopyridine and 5-methyl-2-aminopyri-
dine (5CAP and 5MAP, respectively) and with quinoline [44]. The magnetic interactions
arise from halide–halide contacts [45]. With the exception of the quinolinium complex, the
layers of CuX4 dianions stack directly on top of one another so the interactions between the
layers are considerably larger (J′/J ≈ 0.2).

Figure 14. The dimensionless susceptibilities of two uniform lattices (1-D chain and 2-D square) and three dimerized
lattices (dimer, alternating chain with α = 0.5, and the isotropic spin ladder) are plotted vs. the relative temperature.

†We thank Roger D. Willett for this insight.
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The magnetic susceptibilities of (5BAPH)2CuBr4 and Cu(pyrazine)2(ClO4)2 are presented
in figure 16 where it is seen that each susceptibility shows a rounded maximum characteris-
tic of a low-dimensional Heisenberg antiferromagnet [figure (14)]. The solid curves repre-
sent the best-fit curves to the data using the function of equation (61). The 5BAP
compound has the higher maximum at the lower temperature, consistent with weaker
interaction (J/kB = 6.9 K); the pyrazine compound has J/kB = 17.5 K. The two compounds
have 3-D ordering temperatures TN = 5.09 K and 4.18 K, respectively. In spite of the poor
isolation between the layers for the CuBr4 compound, the 2-D susceptibility model
describes the data very well, even in the ordered state.

Figure 16. The magnetic susceptibilities of Cu(pyrazine)2(ClO4)2 (☐) and (5BAPH)2CuBr4 (O) are shown as well
as the curves representing their susceptibilities with exchange constants J/kB = 17.5 and 6.9 K, respectively.

(A) (B) 

Figure 15. 2-D Cu(II) layers: (A) Cu(pyrazine)2(ClO4)2 – The layers lie parallel to the ab-plane (two layers
shown). Only the semi-coordinate O-atoms from the perchlorate ions, which separate the layers, are shown for clar-
ity. (B) (2-amino-5-bromopyridinium)2 CuBr4 –The CuBr2�4 ions form a 2-D square magnetic lattice parallel to the
ab-plane (two layers shown). The organic cations (H-atoms removed for clarity) lie between the layers and provide
some isolation.
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2-D S = 1/2 Heisenberg ferromagnets (2-D QHFM) also exist [10], although they are less
common and less studied than the 2-D QHAF. The susceptibility of the 2-D QHFM has
been obtained [46] and is expressed as a power series of the ratio of the exchange strength
to temperature, equation (62). The χT product of the 2-D QHFM is compared to that of the
1-D QHFM in figure 13. There it can be seen that the divergence of the 2-D system is much
more rapid than that of the chain system. While the ferromagnetic chain susceptibility
diverges as T−2, that of the ferromagnetic layer diverges [47] as exp(4πJS2/T ). The explicit
formula for the susceptibility of the 2-D QHFM is presented in Appendix D.

vT
C

¼ 1þ
X14
n¼1

an
22n!

Kn; whereK� J

2kT
ðsingle� J formatÞ (62)

Rectangular 2-D QHAF: Rectangular lattices can be formed in a number of ways. A sim-
ple example begins with the linear chain compound Cu(py)2Cl2 [figure (11B)]. When the
two capping pyridine molecules are replaced by one bridging pyrazine molecule, a rectan-
gular lattice appears [48] [figure (17)] with magnetic interactions occurring through both
the chloride ions and the pyrazine molecules.

Until recently, there was no magnetic model available to model the susceptibility of rect-
angular magnets with two exchange interactions, J and αJ, where J is the stronger interac-
tion and 0 < α < 1. If one interaction was considerably stronger than the other, the
susceptibility could be approximated as that of a linear chain with a Curie–Weiss parameter
that would be proportional to the weaker interaction, equation (63). The approximation
becomes valid only in the limit of a weak secondary interaction (α→ 0) and is a poor rep-
resentation of the susceptibility for α > 0.1.

Figure 17. A rectangular magnetic lattice, Cu(pyrazine)Cl2. The Cu(II) ions are bridged by the pyrazine molecules
parallel to the b-axis and the chloride ions parallel to the c-axis.
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vrectangle � v1D
T

T � h

� �
(63)

We have used Quantum Monte Carlo techniques to simulate the magnetic susceptibility
of S = 1/2 magnetic rectangles [49]. For the most common case of antiferromagnetic interac-
tions along both axes, the simulation results are presented in figure 18. Each set of data
points corresponds to the temperature dependence of the rectangular susceptibility of a
given value of the parameter α, ranging from α = 0 (1-D QHAF) for the highest set of points
to α = 1 (2-D QHAF) for the lowest set. Each curve contains a rounded maximum χmax(α)
at a temperature Tmax(α), with χmax decreasing and Tmax increasing with α.

For the case of two antiferromagnetic interactions, it has been possible to generate a
function that can be used to model experimental data. This function has three adjustable
parameters: the S = 1/2 Curie constant C, the stronger interaction strength J/kB, and the
anisotropy parameter α. Due to the existence of the third parameter, the form of the function
is more complex than that presented above for the 1-D QHAF or the isotropic 2-D QHAF
[equations (60) or (61)]. The susceptibility is once again expressed as a ratio of polynomials
in powers of J/kBT [equation (64)], but the numerical coefficients Ni and Di themselves are
polynomials as well. For the convenience of the reader, equation (64) has been written out
explicitly in Appendix D.

vmol ða; JÞ ¼
Cmol

T

1þP6
i¼1 Ni

J
kBT

� �i
1þP6

i¼1 Di
J

kBT

� �i
2
64

3
75 (64)

where NiðaÞ ¼
P4

m¼1 Ni;mam; and DiðaÞ ¼
P4

m¼1 Di;mam.

Figure 18. Dimensionless susceptibilities (χJ/kBC) of antiferromagnetic magnetic rectangles as a function of
reduced temperature kBT/J for different values of α. The top data set corresponds to the 1-D chain (α = 0). The
lower sets represent rectangular lattices in values α increasing by 0.1 down to the square lattice (α = 1). [48]
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The susceptibility function of equation (64) has been used to model the susceptibility of
copper pyrazine dichloride, figure 19. Excellent agreement is found with the data between 2
and 300 K with a larger exchange strength J/kB = 28.5(1) K and αJ/kB = 7.6(1) K. At this
point, it becomes the chemist’s job to identify which exchange path within the compound
corresponds to which exchange strength. This is a simple task for the case of Cu(pz)Cl2;
many bi-chlorobridged copper chains have been previously studied and the antiferromag-
netic interaction through the chloride ions is typically in the range 25–28 K, as seen above
for Cu(py)2Cl2, [J/kB = 27.3 K, figure (12)]. In addition, pyrazine-bridged copper(II) com-
pounds typically have exchange strengths between 5 and 12 K; the value of 17.5 K found in
Cu(pz)2(ClO4)2 is the largest yet discovered. Consequently, for Cu(pz)Cl2, the dominant
exchange is through the chloride bridges with the weaker interaction through the pyrazine
molecules.

3.3.2. Paramagnetic susceptibilities of dimerized exchange-coupled spin networks. The
previous section revealed that antiferromagnets in uniform 1-D or 2-D lattices have
smoothly varying susceptibilities that remain finite at zero temperature. Very different
behavior is found when antiferromagnetic dimers (exchange J) are present; as seen in Sec-
tion 3.2, the energy gap above the singlet ground state leads to an exponentially changing
susceptibility at low temperatures. Even when dimers are coupled together into an extended
lattice by a second interaction αJ, they continue to possess a gapped, singlet ground state
and a vanishing susceptibility at low-temperature.

Only 1-D lattices of dimers will be considered in this work. There are many crystalline
materials that are good examples of the 1-D models to be described. In addition, sufficient
analytical/simulation work has been done to provide expressions for the susceptibilities so
exchange strengths can be derived from experimental data. The study of the magnetic
behavior of 2-D lattices of dimers has not yet been sufficiently developed.

Figure 19. The susceptibility of Cu(pz)Cl2 is presented along with the best fit to the antiferromagnet rectangular
susceptibility function, equation (64).
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There are two ways of forming a bipartite lattice of dimers as seen in scheme 2. The first,
known as an alternating chain, has alternating interactions .• • • J, αJ, J, αJ .• • •, (α < 1) with
each moment having two nearest neighbors. In the second form, known as a spin ladder,
each moment has three nearest neighbors, its dimeric partner (interaction Jrung) and the two
moments on neighboring dimers (interactions Jrail). The spin ladder may equivalently be
thought of as two identical chains (Jrail) coupled together through Jrung to form a ladder.

3.3.2.1. The S = 1/2 Heisenberg antiferromagnetic alternating chain. In the alternating
chain, the stronger interaction is defined to be J, so the weaker interaction (αJ) corresponds
to a range of the alternation parameter 0 < α < 1, with the limiting values for α correspond-
ing to the isolated dimer and the uniform chain, respectively. We recall [Section (3.2)] that
the isolated dimer has a singlet ground state separated from its triplet state by a zero-field
energy gap Δ0 = J. The ground state of the alternating chain is likewise a singlet but with a
gap that also varies with the alternation parameter, Δ(α,J). The gap decreases as α increases,
and becomes zero as α approaches unity. For this reason, the low-temperature
susceptibility of the alternating chain also decreases exponentially to zero at low
temperatures (T < Δ0(α,J )/kB), figure 14.

At higher temperatures, the susceptibility of the alternating chain is less than that of the
dimer but greater than that of the uniform chain; for kBT/J > 0.5, the largest susceptibility is
that of the dimer (only 1 NN), the second largest is the alternating chain (1.α NN), and the
third largest is that of the uniform chain (2 full NN).

A full discussion of the alternating chain susceptibility [30] includes an analytic expres-
sion for the susceptibility. The temperature dependence is too complex to express as a sim-
ple ratio of polynomials, as is the case for uniform and rectangular 2-D magnetic systems
and the uniform 1-D. This complexity is due to a two-parameter energy gap Δ(α,J ). For this
reason, the full equation for the susceptibility of a S = 1/2 Heisenberg alternating antiferro-
magnetic chain is presented in Appendix D. (A similar expression for the S = 1 Heisenberg
Antiferromagnetic chain is also available [50].)

A special case of an alternating chain is known as a Spin-Peierls (SP) chain in which a
structural phase transition converts a high-temperature uniform (gapless) antiferromagnetic
chain into an alternating (gapped) chain at a critical temperature TSP. These chains are rare
because the decrease in magnetic energy by the formation of the gap must outweigh the
energy required to distort the lattice. Because the effective gap (Δeff(B) = Δ0 – gµBB) is field
dependent, the critical temperature is also a function of the applied field. Detailed analysis
of SP chains is challenging, due to the interaction between the magnetic and phonon sys-

Scheme 2. One-dimensional arrays of dimers.
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tems. The best-known Spin-Peierls chain is CuGeO3, first reported [51] in 1993. A recent
thorough review is available [52].

An interesting variation of the alternating chain is one in which both the magnitude and
the sign of the interactions alternate, • • Jaf • Jfm • Jaf • Jfm • Jaf • Jfm • •. Physical examples
of such systems are found in antiferromagnetically coupled chains of ferromagnetic dimers,
such as isopropylammonium copper trichloride [53]. A useful expression for the susceptibil-
ity [54] of such a chain has been obtained from calculations based on the negative single-J
Hamiltonian with a positive Jfm and an anisotropy parameter a�Jfm=jJaf j. Expressions for
the reduced susceptibility vr ¼ vmol jJaf j=C are given as ratios of polynomials of powers of
kBT=jJaf j in which the coefficients are themselves third-order polynomials of the anisotropy
parameter. Different sets of coefficients are used for 0 ≤ α ≤ 1 and 1 ≤ α ≤ 8. For the conve-
nience of the reader, these functions are written out explicitly in Appendix D. In addition,
information regarding the design of alternating ferromagnetic and antiferromagnetic
exchange Cu(II) chains has been discussed in detail [55].

As seen in figure 20, the susceptibility curves are all dimer-like in that they decrease
exponentially at low temperatures. The influence of the ferromagnetic interaction is to raise
the value of the susceptibility at all temperatures, with the larger the anisotropy, the larger
the susceptibility. The curves in this figure, starting at the smallest, correspond to values of
α of 0.1, 0.5, 1.0, 1.5, and 2.0, respectively. If Jfm > |Jaf |, the χT product will rise above the
Curie constant upon warming, before ultimately decreasing to equal it at still higher
temperatures.

3.3.2.2. The S = 1/2 Heisenberg antiferromagnetic spin ladder. The spin ladder shares many
features with the alternating chain. Because they are both constructed from dimers, their
magnetic behavior strongly resembles that of the dimer [Section (3.2)]. Each system has a
gapped, singlet ground state, a susceptibility that decreases exponentially to zero at low
temperatures [figure (14)], and a zero-temperature magnetization that remains zero until the

Figure 20. The reduced susceptibility for the ferromagnetic/antiferromagnetic alternating chain is plotted as a
function of kBT/|Jaf| for different values of the anisotropy factor α = Jfm/|Jaf|.
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external field closes the gap at a critical field HC [figure (10)]. In addition, as will be seen
in the following section on field-dependent properties, for fields greater than HC, the mag-
netization of spin ladders increases from zero until saturation is reached at a second critical
field, HC2.

The spin ladder [56] is considerably more complex and interesting than the alternating
chain. The reason is that alternating chain only has one independent energy, J, with the sec-
ond interaction constrained to be αJ, with 0 ≤ α ≤ 1. As α is varied, the chain transforms
smoothly from isolated dimers to a uniform chain. In contrast, there are two independent
energies for the spin ladder, Jrung and Jrail. Their ratio Jrung/Jrail can be much greater than
one (strong rung limit), equal (isotropic case), or much less than one (strong rail limit). It
was anticipated that the gap would vanish as the ratio went to zero (perfectly isolated
chains), but surprisingly there always remains [57] an energy gap Δ proportional to Jrung no
matter how small the Jrung/Jrail ratio. The characteristics of the excited states are very differ-
ent in the three cases.

Numerical expressions for the susceptibility of a S = 1/2 Heisenberg antiferromagnetic
spin ladder are available [58]. As is the case for the alternating chain, the temperature
dependence is too complex to express as a simple ratio of polynomials. The full equations
(one for strong rung, one for strong rail) for the susceptibility of a S = 1/2 Heisenberg alter-
nating antiferromagnetic chain are presented in Appendix D.

Scheme 2 illustrates the two-leg ladder (2LL), but it is possible for additional legs to be
added in parallel, while maintaining the same rung and rail interactions. It was originally
thought that the 1-D QHAF could be smoothly converted into the 2-D QHAF by
considering an N-leg ladder and letting N→∞. The discovery of a gap in the 2LL forced
a reconsideration, particularly after it was realized that the 3LL does not have a gap in the
energy spectrum. The ground state for the three moments on a rung has Stot=1/2, so
the ground state of the 3LL is a doublet while that of the 2LL is a singlet ground state. In
the general case, N = odd leg ladders have doublet ground states while N = even ladders
have singlets.

Among the first known spin ladders [59, 60] were copper oxides with large exchange
constants, SrCu2O3 and Sr14Cu24O41. The two copper oxides share a common ladder struc-
ture in which copper ions are linked by 180° oxygen bridges along the rungs and rails.
Sr14Cu24O41 is a more complex structure in which CuO2 linear chains coexist with the lad-
ders. The magnitude of the energy gaps can be determined experimentally but without
knowledge of the Jrung/Jrail ratio, it was not initially possible to determine an exchange
strength from the energy gap. Later experiments [61] showed the Jrung/Jrail ratio for
Sr14Cu24O41 to be 0.5, with Jrung≈ 950 K.

Replacing some of the Sr ions by Ca in Sr14Cu24O41 produces mobile holes on the lad-
ders, with about 10% hole concentration appearing in the ladders for the compound
Sr3Ca11Cu24O41. Although none of the Sr/Ca compounds become superconducting under
ambient pressure, three compounds with different Sr/Ca ratios undergo insulator–supercon-
ductor transitions at low temperatures under pressures of several gigapascals [62]. This
existence of superconductivity created great interest in spin ladders.

A molecular magnetism approach has created a second generation of spin ladders
(table 2) with a wide variety of Jrung/Jrail ratios, excellent isolation between the ladders, and
much smaller exchange strengths. This last feature has permitted investigations of these
compounds in magnetic fields up to their saturation fields.

Figure 21 displays the ladder-like skeletons for two molecular-based spin ladders, bis-
(2,3-dimethylpyridinium) tetrabromocuprate [67] (aka DIMPY) and copper quinoxaline
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dibromide [65]. The structure of DIMPY consists of a two-leg ladder of CuBr2�4 radicals
with the ladders separated by the organic cations (not shown). The rails of the ladder are
formed via unit cell translations of the CuBr4 dianions with a Br⋯Br separation of 3.905 Å.
The rungs are formed by short contacts between inversion-related CuBr2�4 ions with a
Br⋯Br distance of 4.328 Å. Susceptibility studies reveal the characteristic temperature
dependence of a singlet-ground state antiferromagnet (figure 14) with a rounded maximum

Figure 21. Examples of molecular-based spin ladders. Left: bis-(2,3-dimethylpyridinium) tetrabromocuprate
(DIMPY). Only the CuBr4 dianions are shown, along with the bromide–bromide close contacts (dashed lines).
Right: Copper quinoxaline dibromide, Cu(quinox)Br2.

Table 2. Molecular-based spin ladders with accessible critical fields.

Jrung (K) Jrail (K) Jrung/Jrail Δ (K) Hc1 (tesla) Hc2 (tesla) Ref.

Strong rung
(5iapH)2CuBr4•2H2O 13 1 13 12 8.3 10.4 [63]
(pipH)2CuBr4 13.3 3.8 3.5 9.5 7.0 14.4 [64]
Cu(quinox)Cl2 33.2 21.1 1.57 20 14 54 [65]
Cu(2,3-dmpz)Cl2 29.0 16.0 1.8 22 15 >30 [65]

Isotropic
(5napH)2CuBr4•H2O 20.4 19.6 1.04 11.3 7.8 47 [66]
Cu(quinox)Br2 35 30.3 1.16 20 14 60 [67]

Strong rail
(cpaH)2CuBr4 5.5 11.6 0.45 2.3 1.6 20 [68]
Cu(2,3-dmpyH)2Br4 9.0 17.0 0.53 3.6, 4.5 2.5 ~35 [69]
(dmaH)(3,5dmpH) CuBr4 4.1 7.9 0.52 1.8* 1.2* 13.5* [70]

*Values are estimated but have not yet been experimentally verified. 5iapH = 5-iodo-2-aminopyridinium; pipH = piperidinium; qui-
nox = quinoxaline; 2,3-dmpz = 2,3-dimethylpyrazine; 5napH = 5-nitro-2-aminopyridinium; cpaH = cyclopentylammonium; 2,3-
dmpyH = 2,3-dimethylpyridinium.
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at 11 K and a rapid decrease towards zero at lower temperature (figure 22). The data were
fit to the models of isolated dimers, alternating chains, as well as strong-rail and strong-rung
ladders. Equivalently excellent fits were obtained to the model of a strong-rail ladder (Jrung/
kB = 8.7 K, Jrail/kB = 16.9 K, Jrung/Jrail = 0.51) and an alternating chain with different parame-
ters. Given the structure, the data were interpreted in terms of the spin ladder model, an
interpretation later confirmed by neutron scattering experiments [71]. DIMPY and (cpaH)2-
CuBr4 [66] were the first strong-rail spin ladders to be discovered. The best-studied spin
ladder is bispiperidinium copper tetrabromide [62] (BPCB); it is the first compound to dis-
play [72] a form of 1-D behavior (Luttinger liquid) that had been predicted 50 years ago;
DIMPY has recently [73] been shown to be the second. Because one of these compounds is
strong rung while the other is strong rail, the natures of their excited states are markedly
different.

Copper quinoxaline dibromide is an example of a covalently bonded spin ladder. It con-
sists of neutral Cu2Br4 dibromo-bridged dimers (rungs) that are linked to adjacent dimers
by bridging quinoxaline molecules (rails). Susceptibility studies showed a rounded maxi-
mum near 22 K and a rapid decrease upon further cooling (figure 22). Fitting to the model
of a spin ladder yielded parameters for a reasonably isotropic spin ladder: Jrung/kB = 35.0 K,
Jrail/kB = 30.3 K, Jrung/Jrail = 1.16. These values were confirmed by subsequent neutron
scattering experiments [67b].

3.4. Magnetization of exchange coupled spin networks

Magnetization experiments (isothermal measurement of the moment as a function of applied
field) are useful complements to basic susceptibility studies. Through magnetization, infor-
mation is obtained that can reveal the magnitude and nature of the exchange interactions,
the dimensionality of the magnetic lattice, the existence (or absence) of an energy gap, and
the presence (or absence) of field-induced phase transitions. Magnetization studies of

Figure 22. The magnetic susceptibilities of the spin ladders bis-(2,3-dimethylpyridinium) tetrabromocuprate (Δ)
and copper quinoxaline dibromide (Ο) are shown as a function of temperature. The solid lines correspond to the fits
to the data with the exchange parameters (Jrung/kB = 8.7 K, Jrail/kB = 16.9 K) and (Jrung/kB = 35.0 K, Jrail/kB = 30.3 K),
respectively.
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single-crystals reveal even more information but examination of polycrystalline materials is
still important. Figure 23 displays the low temperature (kBT/J = 0.02) magnetization curves
for four Heisenberg S = 1/2 antiferromagnets.

The magnetization curves in uniform lattices are straightforward. The 1-D QHAF and 2-
D QHAF have a continuous distribution of energy levels so the susceptibilities remain finite
at zero temperature. The initial slope of the magnetization curve equals the susceptibility at
that temperature but increased fields change the slope until full saturation is achieved. For
these lattices, there is only one critical field, the saturation field itself.

Dimerized magnetic systems, such as spin ladders and alternating chains, resemble the
dimer; they too have spin-singlet ground states and critical fields HC1 at which the magneti-
zation first appears at T = 0. However, they contain two exchange strengths (J and αJ for
the alternating chain, Jrung and Jrail for the spin ladder) that lead to the existence of two crit-
ical fields, HC1, the gap-closing field, and HC2, the saturation field. The lower critical field
marks the closing of the energy gap, at which one of the antiferromagnetic bonds is broken,
while the saturation field occurs when the second interaction also is overcome.

It is easy to calculate the relationship between the saturation fields and the exchange
strengths in a system. In a mean-field approximation, the Zeeman energy of a moment in
the saturation field (gµBSHsat) equals the exchange energy of a spin with its neighboring
spins (equation (53)), where z represents the number of neighbors. Canceling out a common
factor of S, we obtain the following,

glBSHsat ¼ zJ=2 (65)

where J has units of Joules (in SI) or ergs (cgs). In practical cases, when the exchange
strength is reported in Kevin, the product J/kB (K) appears in equation (65). A useful
expression for the saturation field (in kiloOersteds) follows:

HsatðkOeÞ ¼ kB
lB

� �
zJðKÞ
2gS

¼ 14:89

2gS
zJ ðKÞ (66)

Figure 23. The relative magnetizations (M/Msat) as a function of relative field (H/Hsat) for the four low-dimen-
sional, Heisenberg antiferromagnetic S = 1/2 lattices. The magnetizations for the uniform 1-D chain and 2-D square
lattices are gapless; those for the gapped alternating chain (α = 0.5) and isotropic spin ladder have lower critical
fields as well as saturation fields.
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As an example, copper pyrazine dinitrate (figure 11) is a uniform S = 1/2 chain with z = 2,
gave≈ 2.14, and J = 10.6 K. Using equation (66), Hsat is calculated to be 146 kOe, equivalent
to 14.6 T, in excellent agreement with experiment [74]. A uniform 2-D lattice has four
nearest neighbors so for a given exchange strength, twice as much field is required to satu-
rate a square lattice as a uniform chain. Copper pyrazine perchlorate [figure (15a)] is a
square lattice with J/kB = 17.6 K. The calculated saturation field is 490 kOe, also consistent
with the observed value [41].

When lattices contain more than one exchange strength, the equation for the saturation
field must be modified (table 3). An alternating chain has two neighbors, one with an
exchange strength J and the other with exchange αJ. For this case, the product zJ is
replaced by (1 + α)J. The rectangular lattice has four interactions, two with J and two others
with αJ so the product zJ = 2(1 + α)J. Each moment in a spin ladder has one neighbor in the
rung (Jrung) and two neighbors in the chain (Jrail); consequently the zJ product for the spin
ladder is Jrung + 2Jrail.

3.5. Anisotropies: exchange and single-ion

Geographers say that every map is a lie. In this way, they remind themselves that every
map is an approximation that excludes information; the map may nevertheless be useful
provided the missing information is not relevant to the task at hand. In the same spirit, it is
time to acknowledge that the Heisenberg Hamiltonian [equation (53)] is also a lie. It
assumes that the moments are free to orient in any direction in space, with the only con-
straint being that they will be parallel, or antiparallel to, the moments with which they inter-
act. It ignores all other factors that may give a preference for a specific direction in space.

There are two immediate objections to the assumption inherent in the Heisenberg Hamil-
tonian: dipolar interactions and crystal fields. The inevitable existence of long-range dipolar
interactions ð/ r�3Þ necessitates an additional term to the overall Hamiltonian, a term that
can lead to a preferred direction as a consequence of minimizing the dipolar energy. A
much stronger influence is due to the presence of crystal fields that lead to a set of orbital
levels for each magnetic ion; lower symmetry creates fewer degeneracies and a greater
number of levels [4, 9, 75]. The presence of unquenched angular momentum in the ther-
mally occupied levels will sometimes lead to the moment preferentially orienting along an
axis or within a plane. In these conditions, the Heisenberg Hamiltonian is inappropriate for
modeling magnetic behavior.

In spite of these entirely valid objections, the Heisenberg Hamiltonian can be successfully
applied to a wide variety of magnetic materials, as seen by all of the compounds discussed
previously in this section. Dipolar interactions and crystal field splittings are always present
but often only provide weak perturbations.

Ions with half-filled shells (Mn(II) d5; Gd(III) f7) and organic radicals make excellent
Heisenberg compounds. The absence of any orbital angular momentum (g = 2.00) creates

Table 3. Nearest neighbors and zJ equivalents for several lattices.

Lattice # nearest neighbors zJ equivalent

Uniform chain 2 2 J
Alternating chain 1 + 1 (1+ α)J
Spin ladder 1 + 2 Jrung + 2Jrail
Uniform layer 4 4J
Rectangular layer 2 + 2 2(1 + α)J
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ideal spin-only moments so crystal-field effects are negligible. However, the large moments
of these metal ions create relatively large dipolar fields, whose strength is proportional to
the square of the moment. If the exchange interactions are small, the influence of dipolar
fields may be found at low temperatures.

Cu(II) is very well described as a Heisenberg ion due to the quenching of the orbital
angular momentum by the crystal field. In sufficiently high symmetry, 〈L〉 = 0 for this ion
but Cu(II) is a Jahn–Teller ion extrordinaire and will distort its coordination sphere to mini-
mize its electronic energy. In the presence of an axially distorted coordination sphere, the
existence of unquenched angular momentum typically leads to an axial gz ≈ 2.25, and trans-
verse gx = gy ≈ 2.06. For this reason, the moment of Cu(II) has different values along differ-
ent axes. This is a minor perturbation to the Hamiltonian, however. In the paramagnetic
state, the normalized susceptibilities (χi/gi

2) have the same temperature dependence. Until
reaching the ordered state, Cu(II) is an isotropic ion. In contrast, the normalized susceptibil-
ities depend on temperature differently for non-Heisenberg ions.

Transition metal ions with unquenched angular momentum are anisotropic ions. Such
ions include Fe(II), d6 and Co(II), d7. The Co(II) ion in a slightly anisotropic tetrahedral
symmetry is discussed in [10]. The ground state of the cubic field is an orbital singlet with
S = 3/2. The axial field splits the S = 3/2 and S = 1/2 doublet by 10 K of energy, with the ±3/
2 state lower, figure (24a). For low temperatures, compared to 10 K, small fields will not
induce any moment transverse to the axis, but will induce large moments parallel to it. At
these temperatures, the isotropic Heisenberg Hamiltonian fails completely. For more
detailed information regarding magnetic properties related to unquenched angular momen-
tum in high-spin six-coordinate Co(II) complexes, see [76].

H ¼ J
X
nn

½aðSxi Sxiþ1 þ Syi S
y
iþ1Þ þ bSzi S

z
iþ1� (66)

Equation (66) displays a more versatile Hamiltonian that can model anisotropic interac-
tions. For the case with the parameters a = b = 1, the Heisenberg form is recovered. For the
extreme case of purely axial moments, the parameters are a = 0, b = 1; this form is known
as the Ising Hamiltonian.

Figure 24. Effects of anisotropy on ground states of transition metal ions. (a) Splitting of the S = 3/2 ground state
for Co(II) in an axially distorted tetrahedral field. Adapted from Ref. [10]. (b) Splitting of the S = 1 ground state of
high-spin Ni(II) by single ion anisotropy.
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HIsing ¼ J
X
nn

Szi S
z
iþ1 (67)

For the remaining extreme case, in which the moments may only lie perpendicular to an
axis, the parameters are a = 1, b = 0, and the model is the XY Hamiltonian, equation (68).

HXY ¼ J
X
nn

ðSxi Sxiþ1 þ Syi S
y
iþ1Þ (68)

It is important to note that the appropriate Hamiltonian for a particular ion may change
as a function of temperature. Consider the Co(II) ion energy levels in figure (24a). For tem-
peratures well below the 10 K gap between the S = 3/2 and S = 1/2 doublets, the behavior of
the ion is distinctly Ising-like. However, for temperatures high compared to the 10 K gap,
both doublets are thermally occupied and the ion behaves as a S = 3/2 Heisenberg ion!

Another form of the exchange Hamiltonian is sometimes used, particularly with Ni(II)
compounds. Ni(II) has a d8 configuration and in octahedral crystal fields the t2g sub-orbitals
are filled while one electron occupies each of the eg states, S = 1; at high temperatures, it
behaves as a S = 1 Heisenberg ion. Unquenched orbital angular momentum leads to a small
splitting of the S = 1 triplet state, with a gap D between the ms = ±1 doublet, and the ms = 0
singlet state, figure (24b). This splitting is said to arise from Single Ion Anisotropy (SIA)
and can be described by a contribution to the Hamiltonian HSIA=D(Sz)

2. If D < 0, the dou-
blet state is low and Ising-like behavior is found; for D > 0, there is preference for the
moments to align within an easy plane, but at low temperatures, the moment disappears as
the singlet ground state is increasingly occupied. If the Ni(II) ions are exchange coupled,
the gap may remain. One such compound is NiCl2∙4SC(NH2)2, to be discussed further in
Section 4.

4. Long-range order

As described earlier, magnetism results from the competing tendencies of interactions and
anisotropies to align moments, and the randomizing effects of thermal energy. At high-
enough temperatures, thermal energy dominates and paramagnetism results. The effect of
interactions on the susceptibility is to induce a finite Curie–Weiss parameter, but in the
absence of a field, there is no spontaneous moment. However, upon cooling the sample to a
sufficiently low temperature, the interactions are able to stabilize a lattice of aligned
moments and magnetic long-range order (LRO) occurs. This order need not lead to a spon-
taneous moment; if the interactions are antiferromagnetic, half of the moments orient in one
direction and the other half in the opposite direction so complete cancelation is found in
zero field.

Magnetic order is formally defined in terms of the correlation length, ξ. Two spins
located n lattice sites apart are correlated if the normalized† expectation value of their dot
product, 〈Si·Si+n〉/〈Si·Si〉 is finite. Two moments that share parallel components have a posi-
tive expectation value while antiferromagnetically correlated spins have negative values.

†By dividing the expectation value for two different spins by the value for any spin with itself, the normalized
expectation value ranges between zero and one.
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Interacting nearest neighbors (n = 1) will have finite expectation values that decrease as the
temperature is raised. As the two spins are further separated (n = 2, 3, …), the magnitude
steadily grows smaller, either as a power law or exponentially. The long-range correlation
length ξ is defined as the number of lattice spacings n required to reduce the expectation
value to a value of e−1 = 0.37. In an interacting paramagnetic material, the correlation length
is finite and increases upon cooling. Short-range order is found within a correlated cluster
but the clusters are not correlated with others far away. Long-range magnetic order occurs
at the temperature at which the correlation length diverges to include all the moments in the
same material.

4.1. Long-range order in 3-D lattices

The molecular-field model (Section 3.1) provides a simple illustration of the process by
which LRO is achieved. The model assumes that each moment experiences a total field
equal to the external field plus a contribution proportional to the magnetization of the sam-
ple: Btot=B+ λM [equation (44)]. The total field was placed into the expression for the
molar magnetization of a paramagnetic assembly of S = 1/2 moments [equation (16)] to
yield equation (45), repeated below.

Mmol ¼ NglB
2

tanh
glBðBþ kMÞ

2kBT

� �
(45)

In Section 3.1, this equation was solved in the limiting case of small field and high tem-
perature, so the hyperbolic tangent is easily approximated as tanh(x) ≈ x the Curie–Weiss
approximation for the susceptibility in the presence of interactions was then derived.

We now examine how equation (45) can lead to spontaneous order, even in the absence
of an external field. First the field B is set to zero, yielding

Mmol ¼ NglB
2

tanh
glBkMmol

2kBT

� �
¼ Msat tanhðxÞ; (69)

where x ¼ glBkMmol

2kBT
(70)

and Msat = NAgµB/2. Equation (70) can be inverted to show the linear dependence of Mmol

upon the parameter x, equation (71a).

Mmol ¼ 2kBT

kglB
x; (71a)

Mmol

Msat
¼ 4kBT

kNAðglBÞ2
x ¼ T

kC
x (71b)

(In equation (71b), the S = 1/2 Curie constant has been substituted.) Equations (69) and
(71b) are two valid equations relating the dependence of the relative magnetization Mmol/
Msat as a function of the parameter x [figure (25)]. Their joint solutions are found where the
linear term and hyperbolic tangent curves intersect (values indicated by arrows). At low
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temperatures, the linear term has a small slope so the intersection occurs at larger values of
relative magnetization. As the temperature gets larger, the intersection moves to lower val-
ues of x, indicating a lower relative magnetization. The spontaneous magnetization vanishes
at the critical temperature TC at which initial slope of tanh(x) equals that of equation (71b).

TC
kC

x ¼ x (72a)

TC ¼ kC (72b)

As expected, the critical temperature is proportional to the molecular field parameter k
[equation (72b)]; the stronger the coupling between the moments, the greater the ability of
the moments to remain correlated against thermal fluctuations. The resulting curve of the
relative magnetization as a function of relative temperature (T/TC) appears as figure (26),
and is qualitatively similar to plots of experimental magnetization versus temperature. There
are distinct quantitative differences with experimental data, particularly for the rate at which
the magnetization vanishes as the temperature approaches the critical point, but the molecu-
lar field approximation does offer qualitative insight into magnetic behavior.

An alternate molecular-field model [77] offers further insight into the formation of LRO.
In this model, the critical temperature is said to occur at the temperature at which the
available thermal energy is comparable to the interaction energy within the 3-D cluster of
correlated spins with z nearest neighbors (a is the separation between adjacent moments):

kBTC=jJ j � zSðS þ 1Þ nðTCÞ
a

� �3

(73)

Figure 25. The ratio of Mmol(T )/Msat = tanh(x) is plotted against the parameter x as the curved line, where x is
defined in equation (70). In addition, straight lines y = (T/TC)x are plotted for T/TC ratios of 1, 0.6, 0.4, and 0.2.
The intersections of the straight lines with the tanh(x) (marked by arrows) mark the ratios Mmol(T )/Msat for the cor-
responding T/TC ratios.
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The importance of exchange anisotropy in the ordering process is revealed in equation
(73). The correlation length for Ising-like systems grows exponentially with temperature
ðnI=a / expðjJ j=kBTÞÞ in lattices of every dimension due to the confinement of the moment
along the preferred axis, while the correlation lengths for XY and Heisenberg systems grow
more slowly. In 1-D, the Heisenberg correlation length ξH varies inversely with temperature;
ξXY grows more rapidly than ξH and less rapidly than ξI. Due to the rapid growth of the
Ising correlation length upon cooling, the condition for ordering is achieved at relatively
high temperatures. Ising systems are the most stable against thermal fluctuations.

4.2. Long range order in low-dimensional lattices

Magnetic ordering in ideal low-dimensional magnets (1-D and 2-D) cannot be described by
equation (73) without modification. As mentioned above, the correlation length of a 1-D S
= 1/2 Heisenberg magnet diverges as T−1, that of the equivalent XY magnet diverges twice
as rapidly, and that of an Ising magnet diverges as exp(J/kBT ). In every case, these correla-
tion lengths diverge as T approaches zero so LRO would seem inevitable. However, the
ground state is not determined by a minimum in the energy U but by a minimum in the free
energy F:

dF ¼ U � TdS

At any finite temperature, the free energy can be reduced by increasing the entropy. This
increase can be accomplished with the smallest increase of energy by simply reversing the
orientations of all spins to the right of the nth spin. There are N possible locations for the
break in an N-spin chain so the entropy gain is significant, the broken chain is favored, and
the correlation length is rendered finite. At any finite temperature, an ideal 1-D magnet does

Figure 26. The relative magnetization Mmol(T )/Msat is plotted as a function of the relative temperature T/TC.
These values are obtained from the molecular-field approximation for the development of long-range order in a S =
1/2 Heisenberg ferromagnet.
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not order. (This argument does not apply for higher dimensional lattices. A single reversed
spin in a 2-D lattice does not reduce the size of a correlated area because all the spins
around the reversed spin retain their original alignment.)

Many quasi-1-D magnets have been studied during the past 50 years, as described in
Section 3. These are physical realizations of 3-D crystals that contain predominately
1-D-correlations. Inevitably†, there are interactions J′ between magnetic chains that lead to
correlations between the chains and induce LRO at some temperature. The molecular field
relationship of equation (73) can be modified to reflect the presence of both the intrachain
and interchain interactions [78, 79]. The 1-D correlations grow at a rate determined by the
dominant exchange strength, J, and the nature of the interactions (H, XY, I). The weaker
interaction, J′, couples the correlated blocks of moments together until the interaction
energy is larger than the available thermal energy. At this temperature, LRO is achieved.
The number of spins in a block is proportional to the correlation length for a 1-D system
and the square of the correlation length for 2-D materials. This approximation leads to the
following result for the dependence of the ordering temperature upon the parameters J and
J′:

kBTC=jJ j � z0jJ 0jSðS þ 1Þ nðTCÞ
a

� �n

; n ¼ 1 (1-D) or 2 (2-D) (74)

The importance of the exchange anisotropy is illustrated in figure (27), in which the rela-
tive correlation lengths of Heisenberg, XY, and Ising S = 1/2 chains are plotted as a function
of the relative temperature kBT/J. Also plotted is a line proportional to the thermal energy
kBT with a slope equal to 1=fz0jJ 0jSðS þ 1Þg; the intersection of this line with the respective
correlation curves determines the critical temperature for that model system. It is clear that
the exponential growth of correlations in the Ising chain leads to LRO at significantly
higher temperatures than those with XY or Heisenberg interactions.

This molecular-field approximation leads to the following results for the dependence of
the ordering temperature of 1-D and 2-D magnets upon the parameters J and J′:

Quasi-1D : kBTC=jJ j � z0SðS þ 1Þ
ffiffiffiffiffiffiffiffiffi
J 0=J

p
;

Quasi-2D : kBTC=jJ j � z0SðS þ 1Þ lnðJ 0=JÞ (75)

This relation for the 1-D magnet is plotted as the dot–dash line in figure 28, a plot of
kBTC versus |J′/J| for 1-D and 2-D Heisenberg antiferromagnets.

More accurate numerical methods are now available for studying the relationship between
TC and |J′/J|. A significant advance [28] was made in 2005 using quantum Monte Carlo
(QMC) simulations and fast processors. The Néel temperatures of quasi-1-D and -2-D
Heisenberg antiferromagnetic lattices were determined as a function of the J′/J ratio and
empirical formulas proposed to determine the value of J′ from knowledge of J and TN [80].
The results for the 1-D and 2-D models are also plotted in figure 28. Note that the tempera-
ture scale for the quasi-1-D magnets (left axis) covers five orders of magnitude while the
analogous scale for the 2-D magnets (right axis) spans less than one decade.

†Dipolar interactions are always present, even in the absence of superexchange pathways.
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These numerical studies have confirmed the qualitative predictions for the molecular field
model stated in equation (75). The kBTN/J ratio for quasi-1-D and 2-D Heisenberg antiferro-
magnets do scale with (J′/J )0.5 and ln(J′/J), respectively, although the molecular field mod-
els always predict higher critical temperatures than are observed. This is understood in
terms of the basic MF approach of assuming an infinite range interaction, as well as ignor-
ing the effect of thermal and quantum fluctuations which inhibit ordering. More recent [81]
MF models based on equation (75) that include the effects of interchain interactions are sig-
nificantly improved and agree qualitatively with the results in figure 28.

Figure 28. The critical ratios, kBTN/J, of the quasi-1-D (solid line) and -2-D (dashed line) S = 1/2 Heisenberg anti-
ferromagnets are plotted as a function of the exchange ratios J′/J, where J′ is the interchain or interlayer interaction,
respectively. The critical temperatures are normalized to the ordering temperature of the 3-D S = 1/2 Heisenberg an-
tiferromagnet for which J′= J. The dot–dash line corresponds to the mean-field (MF) prediction for the quasi-1-D
antiferromagnet according to the formula in equation (76).

Figure 27. The relative correlation lengths for S = 1/2 Heisenberg, XY, and Ising antiferromagnetic chains are plot-
ted as a function of temperature. The intercepts with the straight line correspond to the MF values for the respective
critical temperatures.
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Quasi-1D :
kBTN
J

¼ J 0

J

� �
� 0:932

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

2:6J

kBTN

� �
þ 1

2
ln ln

2:6J

kBTN

� �s" #
(76)

Quasi-2D :
kBTN
J

¼ 2:30

2:43� ln J 0
J

� �� � (77)

The numerical results of reference [28] can be expressed as the empirical equations (76)
and (77). Note that these are only valid for S = 1/2 Heisenberg antiferromagnets but similar
results are also found for classical spin systems (S =∞). These equations can readily be
inverted to solve for the J′/J ratio in terms of the measured value of kBTN/J. Direct knowl-
edge of the interchain or interlayer J′ is of great interest for testing models of low-dimen-
sional magnetism but is rarely available experimentally. Two cases in which J′ can be
measured are mentioned. Spin wave dispersion curves of low-dimensional magnets can be
determined by inelastic neutron scattering [82]. Analysis of the dispersion for scattering
normal to the magnetic chain or layer directly reveals the value of J′. The second case
involves metamagnets (easy-axis ferromagnetic layers coupled antiferromagnetically by J′ );
application of a field parallel to the easy axis will align all the moments at a critical field
proportional to J′.

A striking feature of figure 28 is the much greater stability of the 2-D antiferromagnets
relative to the 1-D. While a J′/J ratio of 10−5 reduces the kBTN/J ratio of the 1-D magnet by
nearly five orders of magnitude, the same exchange ratio only reduces the critical ratio of
the 2-D system by a factor of six. This difference is due to the much more rapid growth of
the correlations in 2-D. Even for the isotropic Heisenberg interactions, most subject to ther-
mal and quantum fluctuations, the correlation length grows exponentially [47, 83] with
decreasing temperature nH / exp J

kBT

� �
. Inserting this rapidly diverging correlation length

into equation (74), it is seen that the right-hand side of the equation grows so rapidly upon
cooling than even a J′/J ratio of 10−5 does lead to LRO.

The ideal (J′ = 0) 2-D QHAF only has LRO at T = 0; any thermal fluctuations are suffi-
cient to render it paramagnetic [85a]. In contrast, the XY- and Ising S = 1/2 systems order at
finite temperatures. The 2-D Ising system was shown to spontaneously order [84] at kBTN =
1.134 J (single-J format). The 2-D XY antiferromagnet forms vortices and antivortices of
moments within the XY plane, the diameters of which grow upon cooling. The vortices
come into contact at the critical temperature kBTBKT = 0.342 J [85] and a unique form of
LRO is predicted to appear with a divergent susceptibility but no spontaneous magnetiza-
tion. This transition is known as the Berezinskii–Kosterlitz–Thouless (BKT) transition after
the theorists [86] who first predicted its existence. While multiple quasi-2-D Heisenberg
[40] and Ising magnets are known [11], no crystalline compounds have been found in
which a BKT transition is definitive [87].

The results of figure 28 were obtained for purely Heisenberg antiferromagnetic 1-D and
2-D lattices (J ) in the presence of inter-lattice exchange (J′). In crystalline systems, purely
isotropic exchange is rare. Even for transition metal S = 1/2 moments, there remains some
unquenched orbital angular momentum that induces a preferential orientation in the crystal
and leads to anisotropy in the g-factor†. It is common to find values of gx = gy = 2.06 while
gz = 2.20. Spin-orbital coupling yields a preference to the moment to orient along the z-axis

†In contrast, organic magnetic radicals are pure Heisenberg materials.
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and the ion is no longer isotropic. The exchange Hamiltonian is more correctly described
by the anisotropic form of equation (78) rather than equation (53a).

H ¼ J
X
nn

½Sxi Sxj þ Syi S
y
j þ ð1� DÞSzi Szj � (78)

The anisotropy parameter Δ corresponds to XY or Ising anisotropy when Δ is negative or
positive, respectively. The anisotropy values determined for Cu2+ ions have been found
[41] to be small, |Δ| ≤ 0.01 Numerical studies [88, 89] show that even such small anisotro-
pies significantly affect the ordering process of purely 2-D, quasi-Heisenberg antiferromag-
nets. In the absence of any interlayer interactions (J′ = 0), an Ising-like anisotropy Δ = 0.01
creates an ordering ratio TN/J = 0.28; an equivalent XY-anisotropy Δ(XY) = –0.01 leads to a
considerably smaller value TN/J = 0.22. Evidently, the Ising anisotropy has an influence 20-
fold that of the XY type. Referring to the isotropic exchange results in figure 28, these same
ordering ratios would be induced by J′/J ratios of 5 × 10−3 and 2 × 10−4, respectively. Well-
isolated magnetic layers are found to have ordering temperatures in the region 0.2 < TN/J <
0.35, where both interlayer exchange and exchange anisotropy are relevant. For this reason,
detailed understanding of the origin of the LRO in these compounds remains elusive.

A graphical summary of the influence of lattice and exchange anisotropy upon long-range
order is presented in table 4. The horizontal axis represents the number of spin degrees of
freedom, three for the isotropic Heisenberg model, two for XY anisotropy, and one for the
Ising case. The vertical axis represents the dimensionality of the magnetic lattice in which
correlations can form. The contents of the cells (Yes, No, BKT) refer to the presence (Yes),
absence (No), or special case (BKT) of long-range order at T = 0. The stability of the
ordered state is increased by increasing the number of lattice dimensions and decreasing
the number of spin degrees of freedom.

4.3. Absence of long-range order

This review has concentrated on magnetically ordered materials but many magnetic systems
never undergo finite temperature transitions to LRO. The explanation in all cases is found
in the definition of LRO in terms of the diverging correlation length. Examples include the
following:


 finite magnets;

 magnets with singlet-ground states; and

 highly frustrated magnets.

Table 4. Dimensionality of spin anisotropy compared with lat-
tice dimensionality.

Spin ! 3 2 1
# Lattice (Heisenberg) (XY) (Ising)

3-D Yes Yes Yes
2-D No BKT Yes
1-D No No No
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4.4. Finite magnets

Magnetic order is lost at a temperature when the available thermal energy becomes compa-
rable to the energies holding the moments into alignment. These energies include both
exchange and anisotropy contributions. For traditional ferro- and ferri-magnets (metals and
oxides), both types of energy are present and ordering temperatures are high. However, the
ordered state does not possess the saturation magnetization; the dipolar fields of one section
of the magnet are oriented antiparallel to moments in neighboring sections. The overall
energy is minimized by subdividing the sample into domains. If the dominant anisotropy is
axial, adjacent domains have moments oriented antiferromagnetically. For some cubic crys-
tals, such as metallic nickel, the easy axes are along the cube diagonals so additional
domain orientations are possible.

In zero field and at temperatures well below TC, the net magnetization of a sample may
be zero. Application of an external field along a symmetry axis can saturate the sample once
the anisotropy energy is overcome. When reducing the field back to zero, hard magnets
retain most of their magnetization while soft magnets readily break into domains, leaving
little, if any bulk magnetization.

The volume of a magnet can be reduced to the size of a domain (typically a micron in
dimension) without significantly affecting the critical temperature or the volume magnetiza-
tion.† Further reduction in volume changes the balance of anisotropy energy to thermal
energy. Once the sample is below a certain size (≈50 nm), the anisotropy energy (proportional
to the volume of the sample) becomes too low to prevent the orientation of sample moment
from thermally fluctuating. The magnetization of a collection of randomly oriented particles
becomes equivalent to the paramagnetism of a collection of randomly fluctuating atomic
moments. The primary difference between the two situations is the size of the moments
involved; the atomic moments are on the order of Bohr magnetons while the moment of the
particle is μ =MV, where the volume incorporates thousands of individual atomic moments.
This condition is known as superparamagnetism, first predicted by Néel [90].

Typically, superparamagnets have an axial anisotropy of the type U = (CV/2)sin2φ, where
C depends on the magnitude of the anisotropy, V is the volume of the domain, and φ is the
angle between the moment and the axis. The energy barrier has a height of 1

2CV ; the moment
is stable for φ = 0 or π unless an external source of energy induces a transition. The energy
could be thermal or from an external field. The flipping process occurs more rapidly if the
volume is low or if the temperature is high. In the presence of a small external field, one
alignment is favored with the fraction of domains in the two energy states determined by the
Boltzmann factor.‡ For this reason, the rate of flipping Γ is proportional to the Boltzmann
factor [equation (79)], where the relaxation time τ is the reciprocal of the flipping rate Γ.

C � 1

s
/ e�CV=2kBT ; (79)

The exponential dependence of the flipping rate upon domain volume leads to an extreme
variation in relaxation times. As pointed out in [3], under identical conditions the relaxation
time for a spherical domain with radius 17 Å is 10−1 s while it is 108 s for a radius of 22 Å!
The ability to understand the relaxation processes in single domain particles was greatly

†See sections 7 and 8 in Refs. [3] and [6], respectively.
‡This is analogous to the problem of a S = 1/2 moment in an external field described in section 2.
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limited by the inevitable distribution of domain sizes of metallic or metal oxide samples, or
the clusters of iron atoms found in the protein ferritin [91].

The relaxation process of identical domains can be readily studied with ac-susceptibility.†

An oscillating field of angular frequency ω is applied to the sample. If this frequency is low
compared to the relaxation rate (ω ≪ Γ ), the sample has time to equilibrate with the field
and a normal paramagnetic susceptibility is measured; the out-of-phase component of the
susceptibility χʺ (which measures the rate of energy absorbed by the sample) is zero. For ω
≈ Γ, the sample does not have sufficient time to equilibrate and the measured susceptibility
falls below the equilibrium value. In addition, χʺ becomes a maximum. In the condition ω
>> Γ, the external field is changing much more quickly than the sample can relax so both
the in-phase χ and out-of-phase χʺ responses go to zero.

Identical domains are found in crystals of high-spin molecules, also known as nanomag-
nets. The contents of each unit cell are identical and the alignments of the easy axes are par-
allel (in the absence of canting). In practice, these compounds are studied as a function of
temperature at a fixed frequency, with the temperature dependence remeasured at other fre-
quencies. It is found that the maximum in χ decreases in magnitude and moves to higher
temperatures with increasing frequency. The behavior of χʺ is similar. The ability to study
nanomagnets, such as Mn12, using relaxation methods has provided great insight into the
dynamics and the Hamiltonians of these compounds.

The relatively small moments of nanomagnets, compared to those of superparamagnet-
ism, led to one of the most important developments in molecular magnetism, the discovery
of macroscopic quantum tunneling [92]. A nanomagnet is selected with uniaxial anisotropy
and a high-spin (S) ground state. A single crystal is cooled to low temperatures in a field;
each moment is then in one of the lowest energy states, with the distribution determined by
the Boltzman factor, equation (79). At T = 0, only the mS = S state is occupied. The field is
then brought to zero, at which point the energies of the mS and –mS states are equal. This is
not an equilibrium situation because the occupied states are prevented from relaxing by the
energy barrier. As the field reverses direction, the occupied states are increasingly unstable.
If the temperature is raised, they may relax via the ordinary thermal process.

There is an alternative process, quantum tunneling. As the field slowly reverses, the mS =
S state rises in energy and becomes degenerate with the –mS–1 state which decreases in
energy. The two states are mixed by a small transverse field and relaxation occurs. If the
field continues to grow in the reverse direction, additional degeneracies occur at higher dis-
crete values of field and the magnetization increases in steps. Quantum tunneling had been
proposed long before the existence of Mn12 [93] but the unavailability of monodisperse su-
perparamamagnets with relatively small ground state spin values left the concept purely the-
oretical. The ability to study nanomagnets revolutionized the study of magnetic tunneling in
quantum systems [94].

4.5. Magnets with spin-singlet ground states

Section 3 introduced several ways in which spin-singlet ground states can arise. Antiferro-
magnetic dimers (Section 3.3.2) have non-magnetic ground states separated from moment-
bearing states by energy gaps Δ proportional to the size of the exchange interactions. In
addition, crystal field splittings and single-ion anisotropy of the correct sign can create a

†See Section 3.1.5 in Ref. [23c].
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singlet-ground state for integer-spin ions such as Fe(II) and Ni(II), also with an energy gap
Δ.

An interaction J′ between each dimer (or singlet-ground state ion) and its z neighbors
may lead to a state of LRO, depending on the relative strength of zJ′ and Δ. Broadly speak-
ing, if zJ′ > Δ, the gap is closed by the interaction and an ordered state will occur at suffi-
ciently low temperatures. However, if zJ′ < Δ, Δ the gap will remain finite but at a reduced
value. At temperatures low compared to the reduced gap, the system will fall into the
ground state and become diamagnetic. This is known as the condition of subcritical
exchange. A number of examples are known [95, 96].

Antiferromagnetic dimers, alternating chains, and spin ladders all have singlet ground
states. As seen in figures 21 and 23, their gaps can be closed by external magnetic fields.
Likewise, the gap of a subcritical exchange system can be closed at which point the ground
state becomes magnetic. At a sufficiently low temperature, LRO will appear, with the criti-
cal temperature being a function of the applied field. This is an example of field-induced
ordering. The compounds Ni(pyridine-N-oxide)6(NO3)2 [97] and NiCl2

·4SC(NH2)2 [96]
were the first two examples of subcritical exchange systems to be identified in 1979 and
1981. Recently, the nickel chloride compound has been extensively studied [98, 99] as an
example of a quantum phase transition, in which the transition is driven by a change in a
term in the Hamiltonian, rather than a change of temperature.

Two spin ladders have been found to undergo field-induced ordering: bispiperidinium
copper tetrabromide (BPCB, strong rung) and bis(2,3-dimethylpyridinium) copper tetrabro-
mide (DIMPY, strong rail) (Section 3.3). Both have shown evidence of Luttinger Liquid
(LL) behavior, which is restricted to 1-D systems. The gaps can be closed by fields of 6.8
and 3.0 T, respectively; beyond these fields, the ladders have magnetic moments and excita-
tions that can travel along them. Careful studies at low temperature show each undergoes a
transition to LRO with the transition temperature varying with the applied field. The highest
transition temperature for BPBC occurs at 0.105 K in a field of 8.5 T, although the LL
behavior persists up to 1.5 K [100, 101]. For DIMPY, the largest ordering temperature is
found near 0.300 K in a field of 8.5 T [102, 103].

4.6. Highly frustrated magnets

There is another class of magnets which fails to order until very low temperatures, if at all.
Many of the compounds in this class are 3-D transition metal/rare earth oxides with large
moments and large exchange interactions; nevertheless, their ordering temperatures are
much less than the Curie–Weiss parameter, θ. The explanations for their behavior are the
particular magnetic lattices involved and the concept of frustration [36].

Frustration in magnetic systems is defined as the inability of any moment to simulta-
neously satisfy all of its magnetic interactions, resulting in ground state degeneracy [35a,
104–109]. This concept is illustrated with magnetic triangles in figure 29. Figure (29a)
represents an Ising antiferromagnetic triangle in which all three interactions are identical
and the easy axis points towards the top and bottom of the page. The two moments at the
bottom of the triangle are antiferromagnetically aligned with each other but the remaining
moment is frustrated. Either choice of orientation opposes one of the interactions, creating a
twofold degenerate ground state.

There is an important distinction between frustration and competing interactions.
Figure (29b) shows an Ising antiferromagnetic triangle with two strong (J1) and one weaker
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(J2) interaction. The two moments at the bottom do experience competing interactions but
their unambiguous alignment, as shown, represents a unique ground state. This triangle is
not frustrated.

Figure (29c) represents an equilateral antiferromagnetic triangle with either XY or
Heisenberg exchange so the moments can orient to minimize their exchange energy. For
every antiferromagnetic system, the ground state is one in which the total spin equals zero.
For the triangle, an energy minimum is reached when the moments are inclined at 120° to
each other (Stot = 0), even though no interaction is completely satisfied since no two spins
are antiparallel. The two lower spins can exchange their orientations (dotted lines), creating
a twofold degenerate ground state and frustrating the triangle.

Extended lattices can be constructed from antiferromagnetically coupled triangles and
tetrahedra, but frustration for triangles only occurs when they share corners, not edges.
The triangular lattice consists of edge-sharing triangles, two of which are shown in

Figure 30. (a) Edge-sharing triangles which exhibit no additional frustration. (b) Corner-sharing triangles which
exhibit a doubling of degeneracy. (c) A frustrated isotropic antiferromagnetic tetrahedron.

Figure 29. (a) Equilateral Ising antiferromagnetic triangle with frustration. (b) Isosceles Ising antiferromagnetic
triangle with competing interactions (not frustrated). (c) Equilateral Heisenberg antiferromagnetic triangle with frus-
tration.

428 C.P. Landee and M.M. Turnbull

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 O
f 

A
tm

os
ph

er
ic

 P
hy

si
cs

] 
at

 1
5:

31
 0

9 
D

ec
em

be
r 

20
14

 



figure (30a). The triangle with spins 1, 2, and 3 is twofold degenerate, but when the
fourth spin is added to the edge-sharing triangle (4), its alignment is predetermined. No
additional degeneracy is added as the lattice is extended so the triangular lattice
[figure (31a)] has a twofold degeneracy no matter how many spins are added. It under-
goes a normal ordering process [110].

Antiferromagnetic tetrahedra with uniform interactions are also frustrated, much more so
than triangles. As seen in figure (30c), any pair of moments can align antiferromagnetically.
The Stot = 0 ground state can be achieved by the remaining pair being antiferromagnetic to
each other, no matter their orientation to the first pair so the ground state of the tetrahedron
is much more degenerate.

In contrast to the edge-shared case, when triangles share corners, each triangle has a
unique twofold degeneracy. This point is illustrated in figure (30b) which shows that only
one moment is shared between the triangles, leaving the two remaining moments to have
two degenerate orientations. The kagomé lattice [figure (31b)] consists of corner-sharing
triangles, so its degeneracy scales as the number of triangles, causing the kagomé lattice to
be considered the holy grail of frustrated antiferromagnets. The best-known representation
of a kagomé lattice is Herbertsmithite, ZnCu3(OH)6Cl2 [111], which consists of Cu(II)-based
kagomé planes separated by diamagnetic Zn(II) ions. In spite of a strong (J/kB ≈ 190 K)
nearest-neighbor interaction, no long range order has been determined above 50 mK [112].

What is the experimental evidence for the presence of frustration in a magnet? The most
common signature of frustration is a temperature dependence of the magnetic susceptibility
similar to that found in low-dimensional antiferromagnets, although for very different rea-
sons. At high temperatures compared to the dominant exchange interaction, the material is
paramagnetic and the susceptibility follows Curie–Weiss behavior (Section 3.1) with a
Weiss constant proportional to the product of J and the number of nearest neighbors [equa-
tion (52)]. As the temperature is lowered, the susceptibility shows a broad maximum and
continues to decrease. If the ground state is a singlet, the susceptibility decreases to zero at
the lowest temperatures, as in figure 22, while it will remain finite if there is a ground state
moment [figure (18)]. The presence of ordering will appear as an abrupt change in the slope
of the susceptibility, usually at a temperature at TN that is much lower than the value of θ.
An index of the degree of frustration is the ratio of the (negative) Curie–Weiss constant to
that of the ordering temperature [35a]:

Figure 31. (a) An extended triangular lattice. (b) The kagomé lattice.
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f ¼ � h
TN

(80)

Magnetic materials with f-values greater than ten are considered frustrated. The value for
Herbertsmithite holds the current record, f > 1800!

Why do frustrated magnets fail to order? The answer to this question can be given in
terms of the correlation length ξ. The correlation length needs to grow upon cooling; so at
some temperature, the total exchange energy will overcome the randomizing effects of
thermal energy, equation (73). This growth does not occur in frustrated magnets, for reasons
apparent in figure (29c). The spin at the top of the triangle is not strongly correlated to
either of its neighbors, for they are fluctuating between their two degenerate orientations. If
this triangle is part of a kagomé lattice, neither of the bottom spins are strongly correlated
to the moments in the adjacent triangle, due to that triangle’s twofold degeneracy. The
correlation lengths in frustrated magnets are short, and do not increase upon cooling when
well below the Curie–Weiss temperature. These features have been observed by neutron
scattering on Herbertsmithite [113] as well as predicted by calculations for the kagomé lat-
tice [114]. Note that this explanation is very different from the reason low-dimensional
magnets do not order until low temperatures. For low-D materials, the correlation lengths
do grow upon cooling, but only along one axis (1-D) or along a plane (2-D); the correla-
tions do not span the entire sample until temperatures comparable to the interchain or inter-
layer interaction strength J′, equations (76) and (77).

Nevertheless, most frustrated magnets do ultimately order; Herbertsmithite is the excep-
tion, not the rule. The magnets discussed in this section are examples of Geometrically
Frustrated Magnets for which the frustration is inherent in the lattice. Any perturbation that
breaks the symmetry of the lattice will break the ground-state degeneracy and lead to order.
Examples of such perturbations are grain boundaries in crystals, impurities in the magnetic
sites, voids, an external magnetic field, and even applied pressure [115]. Other sources of
symmetry-breaking are spin-canting contributions to the Hamiltonian as well as interactions
between moments that are not nearest neighbors.

The 3-D analog of the kagomé lattice is the cubic pyrochlore structure of formula
A2B2O7 [105] which consists of corner sharing antiferromagnetically coupled tetrahedral
units, figure (29c). The A-site is occupied by a trivalent rare earth element and the B-site
by a tetravalent transition metal ion; a well-studied example is Ho2Ti2O7. While the nearest
neighbor exchange leads to a degenerate lattice, the Ho(III) ion has a magnetic moment of
nearly 10μB, so the dipolar fields are large and contribute to the breaking of the degenera-
cies at low temperature [104].

Frustration has other origins besides the lattice-symmetry imposed type characteristic of
the geometrically frustrated magnets. Uniform linear chains with nearest-neighbor exchange
J1 and antiferromagnetic next-nearest neighbor exchange J2 become frustrated for certain
ratios of J2/J1. The earliest experimental evidence of frustration was found in metallic cop-
per that had been doped with small amounts (≈ 0.5%) of a 3-D transition metal such as Mn
or Fe. The magnetic interactions between the dopant atoms decrease with distance while
oscillating in sign (RKKY interaction); consequently, different moments experience differ-
ent combinations of competing ferro- and antiferromagnetic interactions and frustration
results. Due to the randomness in these metals, known as spin glasses [116], they are more
difficult to study and understand than the geometrically frustrated magnets.
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Appendix A. Relationship between Gaussian and rationalized MKSA units

Appendix B. Fundamental physics constants

Appendix C. Energy units and conversion factors

The fundamental (SI) unit of energy, the joule, is too large for the atomic scale. In practice, alter-
native units are used which are on the order of the energy scale being studied. Each of these
units is directly related to energy through fundamental constants. For example, the thermal
energy of one kelvin can be found by the equation E(J) = kBT(K), where kBT is Boltzmann’s
constant of 1.380 6488(13) × 10–23 J K−1. Similarly, the energy of an electromagnetic wave-
length of one centimeter is found from the Planck’s equation:

E ¼ hf ¼ h
c

k
¼ 1:986� 10�25 J m

0:01m
¼ 1:986� 10�23J

Quantity Symbol Gaussian unit Conversion* MKSA unit

Force F dyne 10–5 newton (N)
Energy U erg 10–7 joule (J)
Energy density U/V erg cm–3 10–1 J m–3

Current I abampere 10 Ampere (A)
Magnetic field H oersted (Oe) 1

4p � 103 amp-turns m–1

Magnetic induction B Gauss (G) 10–4 tesla (T)
Magnetic moment l erg G–1 (emu) 10–3 J T–1 = A m2

Volume magnetization M erg G–1 cm–3 103 A m–1 =
(emu cm–3) J T–1 m–3

Mass magnetization Mmass erg G–1 g–1 1 A m2 kg–1 =
(emu g–1) J T–1 kg–1

Molar magnetization Mmol erg G–1 mol–1 10–3 A m2 mol−1 =
(emu mol–1, cm3 mol–1) J T–1 mol–1

Susceptibility χvol dimensionless 4π dimensionless
Mass susceptibility χg, χkg cm3 g–1 4π × 10–3 m3 kg–1

Molar susceptibility χmol cm3 mol–1 4π × 10–6 m3 mol–1

Demagnetization D, N dimensionless 1/(4π) dimensionless factor

*One dyne = 10–5 newton; one erg = 10–7 joule, etc.
A more comprehensive version of this table, plus a second table on converting Gaussian/cgs units to the SI equivalents, are avail-
able at http://www.nist.gov/pml/electromagnetics/magnetics/magnetics-publications.cfm.

Quantity SI value and unit CGS value and unit

Avogadro constant (NA) 6.022 141 × 1023 mol–1 6.022 141 × 1023 mol–1

Bohr magneton (mB) 927.400 × 10-26 J T–1 927.400 × 10–23 erg G–1

Boltzmann constant (kB) 1.380 64 × 10–23 J K–1 1.380 64 × 10–16 erg K–1

electron charge (–e) 1.602 176 × 10–19 C 1.602 176 × 10–20 abC
electron mass (me) 9.109 382 × 10–31 kg 9.109 382 × 10–28 g
permeability of vacuum (m0) 4π × 10–7 N A–2 (exact) 1 (exact, dimensionless)
Planck constant (h) 6.626 069 × 10–34 J s 6.626 069 × 10–27 erg s
Speed of light in vacuum (c) 299 792 458 m s–1 (exact) 2.997 924 58 × 1010 cm s–1 (exact)

Source: 2010 CODATA.
http://physics.nist.gov/cuu/Constants/
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Similarly, it can be shown that a millielectron volt (meV) = 1.602 × 10–19 J and a 1 GHz elec-
tromagnetic wave has an energy of 6.626 × 10–25 J. The energy of a moment (spin S) in an
applied field is given by the Zeeman equation [equation (21)]: E = gμBmsB. Assuming g = 2.00
and S = 1/2, the magnetic energy in a field of B tesla can be compared to the other practical
units. One kelvin of thermal energy equals the Zeeman energy in a field of 1.489 T.

This table can be read horizontally or vertically. Moving horizontally from the left-hand side,
1 K is an equivalent energy to those of 0.695 cm–1, 0.08617 meV, 20.84 GHz, and 1.489 tesla.
Moving vertically, the table displays how many K are required to match the energies of the other
energy units. 1.439 K equal 1 cm–1, 11.605 K equal 1 meV, etc.

Appendix D

Equations for susceptibilities of various model systems. Each expression is based on the single-J
form of the Hamiltonian (53a).

1-D HEISENBERG SUSCEPTIBILITIES

Uniform 1-D QHAF [equation (60)]
Single J format, positive J is antiferromagnetic.
Parameter 1: CC, the Curie Constant.
Parameter 2: Jk, the exchange strength expressed as a temperature
Parameter 3: PARA, the percentage of paramagnetic contribution

Chi = (1-0.01* PARA)*(CC/T)*(1.+(-0.053837836)*(Jk/T) +0.097401365*(Jk/T)^2 +0.0144
67437*(Jk/T)^3 +0.0013925193*(Jk/T)^4 +0.00011393434*(Jk/T)^5)/ (1. +0.44616216*(Jk/T)
+0.32048245*(Jk/T)^2 +0.13304199*(Jk/T)^3 +0.037184126*(Jk/T)^4 +0.0028136088*(Jk/T)
^5+0.00026467628*(Jk/T)^6) +0.01* PARA *CC/T

Alternating 1-D QHAF
Single J format, positive J is antiferromagnetic.
Parameter 1: CC, the Curie Constant.
Parameter 2: Jk, the exchange strength expressed as a temperature
Parameter 3: alpha, the alternation parameter
Parameter 4: PARA, the percentage of paramagnetic contribution

chi = (PARA*0.01*CC/T) + (1-0.01*PARA)*(CC/T)*exp(-(Jk/T)*(1-0.5*alpha -2* alpha^2
+1.5*alpha^3))*(1.+(Jk/T)*(0.63427990 -2.06777217*alpha -0.70972219*alpha^2 + 4.89720885
*alpha^3 -2.80783223*alpha^4)+ (Jk/T)^2*(0.18776962 -2.84847225*alpha + 5.96899688*
alpha^2 - 3.85145137*alpha^3 +0.64055849* alpha^4) + (Jk/T)^3*(0.033603617 -0.757981757*
alpha +4.137970390*alpha^2 -6.100241386*alpha^3 +2.701116573*alpha^4) +(Jk/T)^4*
(0.0038611069 + 0.5750352896*alpha -2.3359243110*alpha^2 +2.934083364* alpha^3
-1.1756629304*alpha^4) + (Jk/T)^5*(0.00027331430 -0.10724895512*alpha + 0.403 45647304*
alpha^2 -0.48608843641*alpha^3 + 0.18972153852*alpha^4) + (Jk/T)^6*(0 + 0.005
78123759*alpha -0.02313572892*alpha^2 +0.02892774508*alpha^3 -0.01157325374*alpha^4)
+ (Jk/T)^7*(2.59870347E-7*alpha -2.39236193E-7*alpha^2) * ((Jk/T)*(1.-alpha)^0.75*(1. +
alpha)^0.25 + 0.38658545*alpha*(1-alpha)-0.20727806 *alpha^2*(1- alpha)^2)^4.69918784)/
(1.+ (Jk/T)*(-0.11572010 -1.31777217*alpha +1.29027781*alpha^2 + 3.39720885*alpha^3-
2.80783223 *alpha^4) + (Jk/T)^2*(0.08705969 -1.44693321*alpha +5.09401919*alpha^2

Unit K cm−1 meV GHz Tesla

K 1 0.695 8.617 × 10–2 20.84 1.489

(Continued)
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-10.51861382*alpha^3 +8.97655318*alpha^4 + 5.75312680*alpha^5 -11.83647774*alpha^6 +
4.21174835*alpha^7) + (Jk/T)^3*(0.00563137 + 0.65986015*alpha -1.38069533*alpha^2
-0.09849603*alpha^3 + 7.54214913*alpha^4 - 22.31810507*alpha^5 +27.60773633*alpha^6
-6.39966673*alpha^7 -15.69691721*alpha^8 +13.37035665*alpha^9 -3.15881126*alpha^10) +
(Jk/T)^4*(0.0010408866 + 0.1008789796*alpha -0.9188446197*alpha^2 +1.6052570070*
alpha^3 -0.7511481272*alpha^4) + (Jk/T)^5*(0.0000683286 -0.1410232710*alpha + 0.6939435
034*alpha^2 -0.9608700949*alpha^3 +0.4106951428*alpha^4) + (Jk/T)^6*(0+ 0.0367159872*
alpha -0.1540749976*alpha^2 + 0.19826671*alpha^3 -0.0806430233*alpha^4) + (Jk/T)^7*(0
-0.00314381636*alpha + 0.01140642324*alpha^2 -0.01338139741*alpha^3 + 0.00511879
053*alpha^4) + (Jk/T)^8*(1.25124679E-7*alpha -1.03824523E-7*alpha^2) *((Jk/T)*((1-alpha)
^0.75*(1+alpha)^0.25 + 0.38658545*alpha*(1-alpha) -0.20727806*alpha^2*(1-alpha)^2))^3.556
92695)

Strong Rung Spin Ladder (Jrung > Jrail)
Single J format, positive J is antiferromagnetic.
Parameter 1: CC, the Curie Constant.
Parameter 2: j_rail the exchange strength expressed as a temperature
Parameter 3: j_rung, the exchange strength expressed as a temperature
Parameter 4: PARA, the percentage of paramagnetic contribution

chi =(1-0.01* PARA)*(CC/T)*exp(-(1-1.462084*j_rail/j_rung+1.382207*(j_rail/j_rung)^2-
0.4182226*(j_rail/j_rung)^3)/(T/j_rung))*(1+(j_rung/T)*(0.6342799-0.4689967*(j_rail/j_rung)-
0.1224498*(j_rail/j_rung)^2-0.6316720*(j_rail/j_rung)^3-0.08782728*(j_rail/j_rung)^4) + (j_rung/
T)^2 * (0.1877696-0.1498959*(j_rail/j_rung)-0.4760102*(j_rail/j_rung)^2 +0.2714945*(j_rail/j_rung)^3
+0.3686003*(j_rail/j_rung)^4) + (j_rung/T)^3*(0.03360362-0.0131970*(j_rail/j_rung)-0.3269535*
(j_rail/j_rung)^2 +0.7854194*(j_rail/j_rung)^3-0.5140804*(j_rail/j_rung)^4) + (j_rung/T)^4*
(0.003861107-0.01530859*(j_rail/j_rung)+0.1567169*(j_rail/j_rung)^2-0.2790342*(j_rail/j_rung)
^3+0.1304374*(j_rail/j_rung)^4) + (j_rung/T)^5*(0.0002733143+0.008596509*(j_rail/j_rung)-
0.03444813*(j_rail/j_rung)^2 + 0.05010183*(j_rail/j_rung)^3-0.02274661*(j_rail/j_rung)^4) +
(j_rung/T)^6*(-0.0002501523*(j_rail/j_rung)+0.001069419*(j_rail/j_rung)^2-0.001893068*(j_rail/
j_rung)^3+0.001088651*(j_rail/j_rung)^4))/(1+(j_rung/T)*(-0.1157201+1.493088*(j_rail/j_rung)-
1.5046567*(j_rail/j_rung)^2-0.2134494*(j_rail/j_rung)^3-0.08782728*(j_rail/j_rung)^4) + (j_rung/
T)^2*(0.08705969-0.1502010*(j_rail/j_rung)+0.9054526*(j_rail/j_rung)^2-1.607161*(j_rail/j_rung)
^3+0.9440189*(j_rail/j_rung)^4+0.07149545*(j_rail/j_rung)^5-0.05532895*(j_rail/j_rung)^6-
0.03673135*(j_rail/j_rung)^7)

+(j_rung/T)^ 3* (0.005631367+0.07738460*(j_rail/j_rung)-0.1639982*(j_rail/j_rung)^2+0.3932678*
(j_rail/j_rung)^3-0.7370737*(j_rail/j_rung)^4 +0.6755368*(j_rail/j_rung)^5 -0.2865834*(j_rail/j_rung)
^6 -0.1009833*(j_rail/j_rung)^7+0.07759403*(j_rail/j_rung)^8 +0.007719311*(j_rail/j_rung)^9-
0.007680941*(j_rail/j_rung)^10)

+(j_rung/T)^4*(0.001040887+0.01252745*(j_rail/j_rung) + 0.1183833*(j_rail/j_rung)^2
-0.2857871*(j_rail/j_rung)^3+0.1510432*(j_rail/j_rung)^4)
+(j_rung/T)^5*(0.00006832857+0.004243732*(j_rail/j_rung)-0.03901711*(j_rail/j_rung)^2

+0.1055626*(j_rail/j_rung)^3-0.06948651*(j_rail/j_rung)^4)
+(j_rung/T)^6*(-0.0001868979*(j_rail/j_rung)+0.009010690*(j_rail/j_rung)^2
-0.019630625*(j_rail/j_rung)^3+0.01131886*(j_rail/j_rung)^4)) + 0.01* PARA *CC/T

Strong Rail Spin Ladder (Jrail > Jrung)
Single J format, positive J is antiferromagnetic.
Parameter 1: CC, the Curie Constant.
Parameter 2: j_rail, the exchange strength expressed as a temperature
Parameter 3: j_rung, the exchange strength expressed as a temperature
Parameter 4: PARA, the percentage of paramagnetic contribution

chi = (1-0.01*PARA)*(CC/T)*exp(-(0.4030*(j_rung/j_rail)+0.0989*(j_rung/j_rail)^3)/(T/j_rail))*
(1+(j_rail/T)*(-0.05383784-0.67282213*(j_rung/j_rail)+0.03896299*(j_rung/j_rail)^2 + 0.01103114*

(j_rung/j_rail)^3)
+(j_rail/T)^2*(0.09740136+0.12334838*(j_rung/j_rail)-0.0253489*(j_rung/j_rail)^2 +0.00655748*

(j_rung/j_rail)^3)
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+(j_rail/T)^3*(0.01446744-0.03965984*(j_rung/j_rail)-0.03120146*(j_rung/j_rail)^2 +0.02118588*
(j_rung/j_rail)^3)

+(j_rail/T)^4*(0.001392519+0.006657608*(j_rung/j_rail)-0.020207553*(j_rung/j_rail)^2+0.008830122*
(j_rung/j_rail)^3)

+ (j_rail/T)^5*(0.0001139343 + 0.0001341951*(j_rung/j_rail) + 0.0016684229*(j_rung/j_rail)
^2 -0.0001396407*(j_rung/j_rail)^3)

+(j_rail/T)^6*(0.0000422531*(j_rung/j_rail)-0.000160983*(j_rung/j_rail)^2 +0.0001335788*
(j_rung/j_rail)^3))/

(1+(j_rail/T)*(0.44616216-0.82582213*(j_rung/j_rail) + 0.03896299*(j_rung/j_rail)^2 -0.08786886*
(j_rung/j_rail)^3)

+(j_rail/T)^2*(0.32048245-0.40632550*(j_rung/j_rail) +0.20252880*(j_rung/j_rail)^2 -0.03801372*
(j_rung/j_rail)^3+0.07998604*(j_rung/j_rail)^4-0.00385344*(j_rung/j_rail)^5

+0.00379963*(j_rung/j_rail)^6)
+(j_rail/T)^3*(0.13304199-0.25099527*(j_rung/j_rail) + 0.11749096*(j_rung/j_rail)^2-0.07871375*

(j_rung/j_rail)^3 +0.4106834*(j_rung/j_rail)^4 -0.01886681*(j_rung/j_rail)^5
+0.00157755*(j_rung/j_rail)^6 -0.00387185*(j_rung/j_rail)^7 +0.00019055*(j_rung/j_rail)^8-

0.00010728*(j_rung/j_rail)^9)
+(j_rail/T)^4*(0.03718413-0.10249898*(j_rung/j_rail)+0.04316152*(j_rung/j_rail)^2 +0.01936105*

(j_rung/j_rail)^3)
+(j_rail/T)̂ 5*(0.002813608+0.000402749*(j_rung/j_rail)+0.001958564*(j_rung/j_rail)̂ 2 -0.003803837*

(j_rung/j_rail)̂ 3)
+(j_rail/T)̂ 6*(0.0002646763-0.0010424633*(j_rung/j_rail)+0.0015813041*(j_rung/j_rail)̂ 2 -0.000291445

*(j_rung/j_rail)̂ 3)) + (0.01*PARA*CC/T)

Alternating FM/AFM Heisenberg Chain
Single J format, positive J is antiferromagnetic.
Parameter 1: CC, the Curie Constant.
Parameter 2: Jk, the magnitude of the antiferromagnetic exchange strength expressed as a tem-

perature
Parameter 3: alpha, the alternation parameter defined as JFM/|JAF|
Parameter 4: PARA, the percentage of paramagnetic contribution
This expression is valid over the range 0 ≤ alpha ≤ 2.

chi = (1-.01*PARA)*(CC/T)*((T/Jk)^3 + 5*(T/Jk)^2 - T/Jk + .05)/((T/Jk)^4 +(5.2623 - .33021*
alpha)*(T/Jk)^3 + (.44976686 - .99234827*alpha - .00881524*alpha^2 + .15481517*alpha^3)*(T/
Jk)^2 + (.18948031 + .36766434*alpha + .51001414*alpha^2 - .2795751*alpha^3)*(T/Jk) +
(.28437797 -.16749925*alpha - .18725364*alpha^2 + .09374817*alpha^3)) + (.01*PARA*CC/T)

Uniform 1-D QH FM [equation (60)]
Single J format, positive J is ferromagnetic
Parameter 1: CC, the Curie Constant.
Parameter 2: Jk, the exchange strength expressed as a temperature

chi = (CC/T)*(1.+1.736278*(Jk/T)+1.07588*(Jk/T)^2+0.12081*(Jk/T)^3) / (1.+1.24008*(Jk/
T)+0.42784*(Jk/T)^2+0.00272*(Jk/T)^3-0.00002*(Jk/T)^4)

2-D HEISENBERG SUSCEPTIBILITIES
Uniform 2-D QHAF: [equation (61)]
Single J format, positive J is antiferromagnetic.
Parameter 1: CC, the Curie Constant.
Parameter 2: Jk, the exchange strength expressed as a temperature
Parameter 3: xx, the percentage of paramagnetic contribution

Chi = (1-0.01*xx)*(CC/T)*(1.+ (-0.998586*(Jk/T) -1.28534*(Jk/T)^2 -0.656313*(Jk/T)^3 +
0.235862*(Jk/T)^4 -0.277527*(Jk/T)^5) /(1. +1.84279*(Jk/T)+1.14141*(Jk/T)^2+0.704192*(Jk/
T)^3 -0.189044*(Jk/T)^4 +0.277545)*(Jk/T)^5)) + (0.01*xx*CC/T)
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Rectangular 2-D QHAF: [equation (64)]
Single J format, positive J is antiferromagnetic.
Parameter 1: CC, the Curie Constant.
Parameter 2: Jk, the exchange strength expressed as a temperature
Parameter 3: alpha, the exchange anisotropy parameter
Parameter 4: PARA, the percentage of paramagnetic contribution

chi = (1.-0.01*PARA)*(0.25*CC/T)*(1.+ (Jk/T)*(1519.2 +533.43*alpha-77.687*alpha^2
-153.13*alpha^3 -169.91* alpha^4) +(Jk/T)^2*(-215.7+100.15*alpha+124.18*alpha^2-127.28

*alpha^3+169.16*alpha^4) + (Jk/T)^3*(218.14-57.494*alpha+10.684*alpha^2 +169.44*alpha^3 +
82.555*alpha^4) + (Jk/T)^4*(-10.769 + 12.189*alpha -227.21*alpha^2 + 45.305*alpha^3 -79.075
*alpha^4) + (Jk/T)^5*(0.094304 + 0.26961*alpha + 27.093*alpha^2 + 128.89*alpha ^3 - 21.344
*alpha^4) + (Jk/T)^6*(-0.00089531 + 0.0093003*alpha – 0.17427*alpha^2 +0.46488*alpha^3 –
0.38915*alpha^4)) / (1.+ (Jk/T)*(369.44 + 126.42*alpha + 13.757*alpha^2 -126.75*alpha^3
+10.215*alpha^4) + (Jk/T)^2*(179.27 +254.16*alpha +234.59*alpha^2 +69.668*alpha^3 -154.58
*alpha^4) +(Jk/T)^3*(50.271 + 106.25*alpha -500.56*alpha^2 +114.28*alpha^3 + 67.521*
alpha^4) +(Jk/T)^4*(95.893 -39.055*alpha +548*alpha^2 +190.2*alpha^3 +41.573*alpha^4) + (Jk/
T)^5*(-4.1906 + 13.921*alpha -234.91*alpha^2 -252.49*alpha^3 -24.395*alpha^4) + (Jk/T)^6*
(-0.00059343 – 0.43284*alpha + 27.795*alpha^2 + 117.38*alpha^3 + 43.919*alpha^4 )) +
(0.25*CC*PARA*0.01)/T

Uniform 2-D QH FM [equation (62)]
Single J format, positive J is ferromagnetic.
Parameter 1: CC, the Curie Constant.
Parameter 2: Jk, the exchange strength expressed as a temperature

chi = (CC/T)*(1. + 3*(Jk/(2.*T)) + 6*(Jk/(2.*T))^2 + 11.*(Jk/(2.*T))^3 + 20.625*(Jk/(2.*T))^4
+ 39.025*(Jk/(2.*T))^5 + 68.777*(Jk/(2.*T))^6 + 119.43*(Jk/(2.*T))^7 + 216.162*(Jk/(2.*T))^8
+ 387.194*(Jk/(2.*T))^9 + 658.342*(Jk/(2.*T))^10 + 1136.229*(Jk/(2.*T))^11 + 2036.605*(Jk/
(2.*T))^12 + 3538.639*(Jk/(2.*T))^13)
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